Miniature optical frequency comb for integrated photonics can be used for quantum data encryption

Jan. 15, 2018
Producing two frequencies within such a comb is the same as producing entangled photons.

Researchers at the University of Southern California (USC; Los Angeles, CA ) Viterbi School of Engineering have invented a new method to create an optical frequency comb, a tool that increases the potential applications of lasers by converting a single wavelength into multiple wavelengths, effectively creating tens to hundreds of lasers from a single laser.1 The new frequency-comb generator consists of optical microcavities covered with monomolecular layers of highly nonlinear small organic molecules. The new device requires 1000x less power to operate than a conventional frequency-comb generator, allowing for mobile applications.

The first applications of frequency combs focused on detecting trace amounts of chemicals and high-precision timekeeping; however, recently, a new application of great significance to society has emerged: quantum cryptography.

While many strategies are being pursued to enable quantum cryptography, one of the leading contenders is based on photon entanglement. Entangled pairs of photons must be created at exactly the same time with exactly the same properties, which is done naturally by a frequency comb. The first step in forming the frequency comb occurs when the primary laser generates a secondary pair of wavelengths; however, because of energy conservation, one wavelength must have higher energy and one wavelength must have lower energy. Additionally, the energies must sum to be exactly equal to the primary laser, and the two new wavelengths must appear at exactly the same time. Thus, frequency comb generators can be viewed as entangled photon generators.

While reducing the size and power requirements of the frequency comb were key technical hurdles, there are many integration and manufacturing challenges remaining before quantum cryptography on portable platforms will be commonplace.

Source: https://viterbischool.usc.edu/news/2018/01/pulses-light-encrypt-data-protect-security-cryptocurrencies/

REFERENCE:

1. Xiaoqin Shen et al., Science Advances (2018); doi: 10.1126/sciadv.aao4507.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!