'Weyl semimetal' shows larger nonlinear optical response than any other known crystal

March 21, 2018
Tantalum arsenide (TaAs) frequency-doubles light very efficiently.

Scientists at the University of California, Berkeley and Lawrence Berkeley National Laboratory (also in Berkeley) have experimentally discovered that a so-called Weyl semimetal, tantalum arsenide (TaAs), has the largest nonlinear optical response of any known crystal, achieving second-harmonic generation (SHG) of light with unprecedented response.1

Specifically, the value of the second-order nonlinear optical polarizability χ(2) in TaAs is larger by about a factor of ten than its value in the conventional electro-optic materials gallium arsenide (GaAs) and zinc telluride (ZnTe).

This study is already stimulating the development of fundamentally new theories about these responses, according to the researchers. Nonlinear optical materials are useful in package-penetrating sensors, night vision goggles, and other devices.

Weyl semimetals

Weyl fermions are novel particles that were predicted to be seen in high-energy physics experiments but have not been observed. However, scientists recently observed these particles as an emergent property of electrons in a unique set of semimetal materials. Recent studies have shown that Weyl semimetals exhibit an unexpectedly large nonlinear optical response. This response gives rise to the largest optical second harmonic generation effect of any known crystal. These observations were made in the transition metal systems tantalum arsenide (TaAs), tantalum phosphide (TaP), and niobium arsenide (NbAs).

Although it was clear from symmetry considerations that there would be a nonlinear response in these systems, there was no theoretical prediction suggesting the large magnitude of response observed. By comparison with other well-known nonlinear crystals, the nonlinear optical response in these systems is larger by factors of 10 to 100. Given the unexpected response, scientists anticipate these findings will stimulate the development of advanced ab initio methods to calculate nonlinear-optical-response functions in these materials. Also, Weyl semimetals are expected to have a wide range of optoelectronic applications as materials to be used for the development of terahertz generators and far-infrared radiation detectors.

Source: https://science.energy.gov/bes/highlights/2018/bes-2018-03-b/

REFERENCE:

1. Liang Wu et al., Nature Physics (2017); doi: 10.1038/nphys3969.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

March 31, 2025
Enhance your remote sensing capabilities with Chroma's precision-engineered optical filters, designed for applications such as environmental monitoring, geospatial mapping, and...
March 31, 2025
Designed for compatibility with a wide range of systems, Chroma's UV filters are engineered to feature high transmission, superior out-of-band blocking, steep edge transitions...
March 31, 2025
Discover strategies to balance component performance and system design, reducing development time and costs while maximizing efficiency.
March 31, 2025
Explore the essential role of optical filters in enhancing Raman spectroscopy measurements including the various filter types and their applications in improving signal-to-noise...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!