Autonomous vehicle sensing technology from Purdue & Stanford is cheaper, more robust than current options

April 16, 2018
The researchers say their innovation is orders of magnitude faster than conventional laser beam steering devices.

Researchers at Purdue University (West Lafayette, IN) and Stanford University (Stanford, CA) believe they have found a new laser light sensing technology that is more robust and less expensive than currently available technologies.

The researchers say their innovation is orders of magnitude faster than conventional leading-edge laser beam steering devices that use phased antenna-array technology. The laser beam steering being tested and used by Purdue and Stanford is based on light-matter interaction between a silicon-based metasurface and short light pulses produced, for example, by a mode-locked laser with a frequency-comb spectrum. Such a beam-steering device can scan a large angle of view in nanoseconds or picoseconds compared with the microseconds current technology takes.

RELATED ARTICLE: Lidar: A photonics guide to the autonomous vehicle market

"This technology is far less complex and uses less power than existing technologies," said Amr Shaltout, a post-doctoral research fellow in Materials Science and Engineering at Stanford who conceived the idea for the method. "The technology merges two different fields of nanophotonic metasurfaces and ultrafast optics."

Laser beam steering is a vital technology that can be used in a wide variety of areas including navigation, space flights, radar applications, imaging, tag-scanners, robotics, archaeology, mapping and atmospheric physics. Faster laser scanning is directly related to higher frame rates as well as improved imaging resolution.

Shaltout came up with the concept while earning his Ph.D. from the Vladimir Shalaev research group at Purdue's School of Electrical and Computer Engineering and delineated it at Stanford when working with the research group of Mark Brongersma.

"The idea proposed by Amr is so powerful that we were honestly surprised that nobody did it before because it is so simple, so efficient, much easier than what people used so far and works much faster," said Shalaev, the Bob and Anne Burnett Distinguished Professor of Electrical and Computer Engineering at Purdue. "This as a wonderful example of fruitful collaboration between Purdue and Stanford."

The researchers say their innovation is chip-compatible technology that doesn't require additional sources of energy. It is based on light-matter interaction between metasurfaces and short pulses from mode-locked lasers with equally spaced phased-lock frequency lines. Another key element is using a metasurface based on patterned silicon film.

Autonomous cars depend on light detection and ranging, or lidar, which is similar to radar only instead emits infrared or visible light that measures how long it takes for the pulses to reflect back off objects and take their images. It would replace the spinning device frequently seen atop roofs of autonomous cars. But that existing technology remains expensive as businesses look for ways to transform the burgeoning autonomous car industry.

Shaltout said the use of photonic metasurfaces was key to the new advancement. He said metasurfaces provide simple, compact and power efficient solutions to photonics design. The combination of those two technologies provide a much simpler approach.

In current phased-array optical technology, each antenna needs to be controlled in what it radiates individually. Under Shaltout's system, each of the structures emit slightly different frequencies, meaning there is no need to address each individual antenna continuously and consume power during that process.

The challenge for the researchers now is to scale up the innovation and move it from the laboratory to the real world. They are looking for investors, partners, or possibly licensing agreements as they work to move forward scaling up the technology. The first developments might be in areas such as scanning devices at stores, airports, or in many other areas before moving on to autonomous cars and automobile original equipment manufacturers.

The technology is jointly owned by Purdue and Stanford.

SOURCE: Purdue University; http://www.purdue.edu/newsroom/releases/2018/Q2/researchers-at-purdue,-stanford-devise-novel-ultrafast-laser-beam-steering-for-autonomous-cars-that-is-less-complex,-uses-less-power.html

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!