New Dutch silicon nitride photonics company, QuiX, aims at quantum computing

Jan. 28, 2019
Formed by U. of Twente and AMOLF researchers, QuiX will create a room-temperature quantum computer for complex calculations.

Dutch scientists from the University of Twente and the research institute AMOLF (Amsterdam) have teamed up to create the first quantum photonic processor based on silicon nitride waveguides. Supported by pre-seed investor RAPH2INVEST, Ad Lagendijk, Willem Vos, Klaus Boller, Pepijn Pinkse, and Jelmer Renema have launched QuiX with the aim to create the a road to quantum computing that builds on their fundamental research.

QuiX B.V. aims to introduce the first single-purpose photonic quantum computer on the market for use in machine learning and quantum simulation applications. The technology is based on research that has, for example, resulted in a silicon nitride waveguide based reconfigurable 8x8 integrated linear optical network for quantum information processing.1 In two years, QuiX will make the first components of this computer available, in the form of a photonic processor with specifications aimed at far beyond the current state-of-the-art. Such a device could be of strong interest to the academic and commercial quantum computing communities.

For quantum computers, the main advantage of photonics over other quantum computing technologies is that processors operate at room temperature, whereas most other quantum computing platforms function just above 0 K, thereby requiring costly liquid-helium cryogenics. Jelmer Renema, the chief technical officer of QuiX, notes that the company's photonic integrated-circuit technology is based on the TripleX technology of integrated-optics giant LioniX International (Enschede, Netherlands). "Their ultralow-loss waveguide technology enables us to produce sufficiently large matrices to facilitate complex calculations and thereby outperform classical computers," says Renema.

Source: https://www.alphagalileo.org/en-gb/Item-Display/ItemId/173536?returnurl=https://www.alphagalileo.org/en-gb/Item-Display/ItemId/173536

REFERENCE:

1. Caterina Taballione et al., arXiv:1805.10999 (2018).

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!