X-rays trigger gamma rays from hafnium isomer

March 1, 1999
Prospects for a gamma-ray laser—commonly thought to be impossible due to the cubic dependence of subthreshold spontaneous emission power on frequency—have brightened.

Prospects for a gamma-ray lasercommonly thought to be impossible due to the cubic dependence of subthreshold spontaneous emission power on frequencyhave brightened. Physicists at the University of Texas at Dallas (UTD) describe development of an isomer of hafnium as a potential gamma-ray laser gain medium. With four of its nucleons in an excited metastable state, the isomer has a 31-year half-life and emits cascades of gamma rays when perturbed by soft x-rays. A single 40-keV photon triggers a gamma cascade with energy totaling 2.5 MeV, a 60X enhancement in energy. Produced by a process called proton spallation, the isomeric hafnium is capable of storing 1.3 GJ of releasable energy per gram.

Obtaining a sample of the material from Los Alamos Scientific Laboratory (Los Alamos, NM), the UTD physicists teamed with researchers from five countries to experimentally trigger gamma-ray production. According to Carl Collins at UTD, the cross section of the hafnium is so large that the team was able to use an ordinary dental x-ray machine as the triggering source. As of yet, the emitted gamma rays are not coherent. Contact Carl Collins at [email protected].

About the Author

LFW Staff

Published since 1965, Laser Focus World—a brand and magazine for engineers, researchers, scientists, and technical professionals—provides comprehensive global coverage of optoelectronic technologies, applications, and markets. With 80,000+ qualified print subscribers in print and over a half-million annual visitors to our online content, we are the go-to source to access decision makers and stay in-the-know.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!