Optical metamaterial design has a negative refractive index over a 552 nm range

May 1, 2014
"Fishnet" 2D metamaterials, which have arrays of identical apertures that perforate a structure consisting of thin-film metal layers alternating with dielectric layers, can have a negative refractive index (NRI) at visible and near-IR wavelengths.

"Fishnet" 2D metamaterials, which have arrays of identical apertures that perforate a structure consisting of thin-film metal layers alternating with dielectric layers, can have a negative refractive index (NRI) at visible and near-IR wavelengths. In the interests of broadening the NRI bandwidth from previous ranges, researchers at RMIT University (Melbourne, Australia) and the University of Sydney (Sydney, Australia) have been experimenting with apertures having complex shapes, including six- and eight-point stars, derived from an evolutionary algorithm. Their theoretical study of fishnet structures with a square unit cell 300 nm in size results in detailed information about the wavelength ranges over which the metamaterials have a double negative refractive index (DNRI), where both permeability and permittivity are negative, and the NRI, over which either the permeability or permittivity is negative.

The metamaterial with the best performance, which has apertures consisting of almost circular 16-sided stars, has a continuous NRI bandwidth of 552 nm, or the band including wavelengths from 640 to 1192 nm. (The NRIs of pre-existing fishnet metamaterial designs have usually maxed out at around 100 nm.) This same structure with the 16-sided stars has a DNRI of 106 nm (a large DNRI is more difficult to achieve, but is more attractive because the resulting metamaterials have lower optical loss). Other star-aperture-based metamaterials have both continuous NRI and DNRI bands in the yellow and green visible regions.

Contact Shiwei Zhou at [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!