Facial recognition algorithm identifies severity of autism

March 30, 2015
Scientists have established that algorithms applied to facial surface measurements can identify the severity of autism spectrum disorders.

University of Missouri (Columbia) and Nanyang Technological University (NTU; Singapore) scientists have established that algorithms applied to facial surface measurements can identify the severity of autism spectrum disorders (ASDs) in autistic children. It has been established that structural differences in the 3D facial morphology of autistic and normal children reflect alterations in embryological brain development and can identify two discrete ASD subgroups that specify the severity of impaired communication and repetitive/restricted behavior patterns. The current algorithm validates these previous findings using an alternative facial-feature distance measurement and multiple clustering techniques.

The faces of 62 Caucasian boys (ages 8–12) with known ASD were imaged using a 3dMD (Atlanta, GA) cranial system that reconstructs a 3D surface model from acquired images using a 3D geodesic computation. From this surface model, distance data are derived for a set of 19 anthropometric facial landmarks defined by Farkas (1994). Four different clustering algorithms were applied to the results using 31 distinct geodesic facial distances and, from further clustering validation analysis, a total of three discrete (rather than two found by earlier algorithms) ASD subgroups were identified that tied tested subjects to particular autistic disorders. The findings establish that facial structure using 31 geodesic facial distances is a useful biomarker to separate biologically discrete ASD subsets for further analysis. Reference: T. Obafemi-Ajayi et al., J. Autism Dev. Disord. (Dec. 2014); doi: 10.1007/s10803-014-2290-8.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!