Opto-thermophoretic method easily assembles colloidal matter

Oct. 12, 2017
An optothermophoretic assembly method uses an ionic surfactant to manipulate and assemble most any colloidal matter using a light-controlled temperature field.

Assembling colloidal particles with sizes at or below the wavelength of light into unique structures such as photonic crystals and metamaterials can be achieved with electrostatic, hydrophobic, or other attraction/repulsion mechanisms or by adding additional materials. However, it only produces the desired assembly shape if the colloidal particles possess the optimum optical, magnetic, or electrical properties that respond to the internal or external applied forces. To expand the boundaries of possibility for colloidal matter assembly, researchers at the University of Texas at Austin, led by Yuebing Zheng, have developed an optothermophoretic assembly (OTA) method that instead uses an ionic surfactant (cetyltrimethylammonium chloride, or CTAC) to manipulate and assemble most any colloidal matter using a light-controlled temperature field.

The surfactant molecules create positively charged colloidal particles after their adsorption on the particle surfaces. The thermophoretic migration of the colloidal particles along the temperature gradient confines the particles at the hot laser spot when low-power continuous-wave laser light is irradiated onto a gold thin film that converts photon energy to thermal energy. In fact, the required energy of 0.8 mW/μm2 is 2–3 orders of magnitude smaller than optical tweezers. The green laser source is easily split with a digital micromirror device into any optical pattern that traps the colloidal particles in parallel with precise orientation control, assembling them into a predefined pattern. The thermal process further depletes the CTAC micelles with an osmotic pressure outside the depletion region exerted on the colloidal particles, leaving the colloidal particles bonded by their own attractive forces when the laser is turned off. Reference: L. Lin et al., Sci. Adv., 3, 9, e1700458 (Sep. 8, 2017).

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!