Combining optics surface-treatment techniques can boost the laser-induced damage threshold of fused silica

Jan. 18, 2018
Surface treatments that include magnetorheological finishing, etching with hydrofluoric acid, ion-beam sputtering, and others can improve the post-polished surface quality of fused silica, thus raising its surface LIDT.

Fused silica is an excellent material for laser optics: not only is it highly transmissive from the near-infrared to the ultraviolet, but it has a very high bulk dielectric breakdown threshold, meaning that pulse energies have to be very high to damage high-quality fused silica internally. But the laser-induced damage threshold (LIDT) for the surface of fused silica is quite a bit lower than for its interior. One reason for this is the surface damage inflicted by optical grinding and polishing of the fused silica. Surface treatments that include magnetorheological finishing (MRF), etching with hydrofluoric (HF) acid, ion-beam sputtering, and others can improve the post-polished surface quality of fused silica, thus raising its surface LIDT.

Scientists at the National University of Defense Technology (Changsha, China) and the China Aerodynamics Research and Development Center (Mianyang, China) have homed in on some of these surface-damage-reducing processes, doing some experiments to characterize them. Using a frequency-tripled Nd:YAG laser with a 7 ns pulse duration at a 1 Hz repetition rate, the group experimentally found that the LIDT of a fused-silica (Heraeus 312) surface already treated with HF acid to raise its damage threshold can be raised a further 30% by a round of ion-beam sputtering (IBS), but only if the IBS is done to a depth <1 μm. If done any further, the IBS causes additional chemical defects that start lowering the LIDT. Also, if an IBS-treated fused-silica surface is then immersed in deionized water, the LIDT drops by about 20%. The results may help to optimize the treatment of polished fused-silica surfaces to maximize their LIDT. Reference: M. Xu et al., Opt. Express (2017); https://doi.org/10.1364/oe.25.029260.

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!