Reconfigurable microfluidic metasurfaces create tunable color displays

April 1, 2018
Integrating microfluidic channels with titanium dioxide metasurfaces creates displays with distinct and high-resolution tunable colors and rapid transition time.

Despite rapid progress in creating color images from nano- or microstructured materials—a process called structural color—the optical characteristics of most nanostructures are static once they are fabricated, severely restricting their use in stereoscopic imaging, animation, point-of-care, and anticounterfeiting applications. But by integrating microfluidic channels with titanium dioxide (TiO2) metasurfaces, researchers at the Harbin Institute of Technology (Shenzhen, China) are now able to create displays with distinct and high-resolution tunable colors and rapid transition time.

The metasurface is composed of an array of TiO2 nanoblocks that are embedded in a polymeric microfluidic channel. By injecting solutions with different refractive indices into the channel, the narrowband reflection peak and the corresponding distinct colors of a TiO2 metasurface can be precisely controlled. The transition time between color changes is as small as 16 ms—orders of magnitude faster than competing techniques and suitable for real-time display applications. Varying the lattice size of the TiO2 metasurfaces enables display of real-time tunable colors that span the entire visible range, and the injection and ejection of solvent in the channels allows erasure and restoration of information encoded in the TiO2 metasurfaces. Reference: S. Sun et al., ACS Nano online (Feb. 2018); doi:10.1021/acsnano.7b07121.

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!