Infrared lasers provide wireless cell phone charging

Jan. 30, 2016
In the world of wireless gadgets, charging is still a big problem. But Israeli startup Wi-Charge is looking to change that by allowing constant wireless charging using infrared laser technology.

Wi-Charge's idea takes a laser gain cavity, which is typically a closed device, and turns it into an "open unit" where one of the mirrors is located, for example, in a light fixture on the ceiling and the other one on the receiving device. The semiconductor gain medium is located in the transmitter and provides the photons that are harvested by the photovoltaic cell at the receiver.

Powerful lasers can be dangerous, however Wi-Charge uses a class 1 infrared laser (safe under all conditions of normal use) and more importantly the "external cavity" design means that the instant anything crosses the path of the laser--your hand, your eye--amplification will stop and the energy will drop.

During operation the transmitter continuously sends a very low power infrared signal across the room and when it hits the retro reflector on the receiver, the signal is returned and a connection is made and amplification begins. The connection will be maintained as long as it is in range and there is a line of sight.
In the world of wireless gadgets, charging is still a big problem. But Israeli startup Wi-Charge is looking to change that by allowing constant wireless charging using infrared laser technology.

Wi-Charge's idea takes a laser gain cavity, which is typically a closed device, and turns it into an "open unit" where one of the mirrors is located, for example, in a light fixture on the ceiling and the other one on the receiving device. The semiconductor gain medium is located in the transmitter and provides the photons that are harvested by the photovoltaic cell at the receiver.

Powerful lasers can be dangerous, however Wi-Charge uses a class 1 infrared laser (safe under all conditions of normal use) and more importantly the "external cavity" design means that the instant anything crosses the path of the laser--your hand, your eye--amplification will stop and the energy will drop.

During operation the transmitter continuously sends a very low power infrared signal across the room and when it hits the retro reflector on the receiver, the signal is returned and a connection is made and amplification begins. The connection will be maintained as long as it is in range and there is a line of sight.
The Laser Focus World take:

As you read further in this article, you'll find out that this charging method is essentially a variant of power-beaming technology (http://www.laserfocusworld.com/_search?q=power+beaming&x=0&y=0). Several good articles describe how laser light is converted to electrical energy; simply use the search bar in the right-hand corner of our website and type in "power beaming" to find articles of interest with these keywords.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!