MULTIMODAL IMAGING: OCT reaches further combined with fluorescence, ultrasound

March 1, 2011
An interdisciplinary team at the University of Arizona has combined OCT and laser-induced fluorescence (LIF) in a single endoscopy device—and reports higher sensitivity and specificity for distinguishing normal tissue from adenoma (benign glandular tumor) compared to either modality alone.

An interdisciplinary team at the University of Arizona has combined OCT and laser-induced fluorescence (LIF) in a single endoscopy device—and reports higher sensitivity and specificity for distinguishing normal tissue from adenoma (benign glandular tumor) compared to either modality alone.1 While optical design is complicated by the large wavelength difference between the two systems, the researchers' new high-resolution endoscope, just 2 mm in diameter, can create focused beams from the ultraviolet to near-infrared. A reflective design ball lens operates achromatically over a large wavelength range, and employs total internal reflectance (TIR) at two faces and reflection at a third internal mirrored face. The 1:1 imaging system obtains theoretically diffraction-limited spots for both the OCT (1300 nm) and LIF (325 nm) channels.

Meanwhile, researchers at the University of California–Irvine and the University of Southern California, having earlier reported what they believed to be the first probe to integrate OCT optical components with an ultrasound (US) transducer, have now used the device to demonstrate high-resolution coregistered intravascular imaging.2,3 The probe is based on a 50 MHz focused ring US transducer, with a centric hole for mounting the OCT probe. The coaxial US and light beams are steered by a mirror, mounted at the head of the hybrid probe 45° relative to the light and the ultrasound beams to change their propagation directions, to enable US/OCT imaging simultaneously. The scientists were able to improve the lateral resolution of US by using a focused ultrasonic beam. They used the integrated systems to image rabbit aorta in-vitro, and say that the combined US-OCT system demonstrated high resolution in visualizing superficial arterial structures while retaining the deep tissue penetration capability of ultrasonic imaging. "The results offer convincing evidence that the complementary natures of these two modalities may yield beneficial results that could not have otherwise been obtained," they report.4

The California researchers note that the approach could have a substantial impact on early detection and characterization of atherosclerosis. At least one commercial developer agrees: Volcano Corp., competitor to LightLab Imaging, which was the first company to receive FDA clearance for a cardiovascular system, in 2010, has a roadmap for combining OCT and IVUS in the same catheter.

1. R.W. Wall et al., Biomed. Opt. Express 2 (3): 421–430 (2011)
2. J. Yin et al., J. Biomed. Opt. 15, 010512, doi:10.1117/1.3308642 (2010)
3. X. Li et al., Appl. Phys. Lett. 97, 133702, doi:10.1063/1.3493659 (2010)
4. H.C. Yang, IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 57 (12): 2839–2843, doi: 10.1109/TUFFC.2010.1758 (2010)

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Custom-Engineered Optical Solutions for Your Application

Feb. 26, 2025
Explore the newest and most widely used applications of Semrock optical filters.

Linear Stages & Rotary Stages for High Precision Automation & Motion Control

Feb. 13, 2025
Motorized Linear Translation Stages & Rotary Precision Positioning Stages for High Performance Automation & Motion Control | PI USA

Motion Controllers for Precision Positioning and Automation

Feb. 13, 2025
PI manufactures a range of precision motion controllers and drivers for positioning systems, including stepper motors, brushless motors, and servo motors.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!