MICROSCOPY/LIVE CELL IMAGING/CELL BIOLOGY: First STED imaging of live cells in two colors

Sept. 1, 2011
Stimulated emission depletion (STED) microscopy—a super-resolution approach that reveals cells and cellular components in detail by absorbing and releasing energy in fluorescent dye—has been limited to single-color imaging of living cells.

Stimulated emission depletion (STED) microscopy—a super-resolution approach that reveals cells and cellular components in detail by absorbing and releasing energy in fluorescent dye—has been limited to single-color imaging of living cells. But effective study of active cell processes, such as protein interactions, really requires multicolor imaging. Now, a team of researchers from Yale University has given a boost to cell biology by reaching this goal. The group describes its work in the August 2011 issue of Optics Express.1

Tubulin and lamin, immunostained with ATTO 647N and KK 114, respectively; a) Raw intensity STED data, and b) channels decomposed by lifetime separation (green: tubulin, red: lamin). (Images courtesy Optics Express)

The key to the researchers’ achievement was overcoming the challenges of labeling target proteins in living cells with dyes optimal for two-color STED microscopy. By incorporating fusion proteins, they improved the targeting between the protein and the dye, effectively bridging the gap. This enabled them to reach resolutions of 78 and 82 nm for 22 sequential two-color scans of two proteins—epidermal growth factor and epidermal growth factor receptor—in living cells.

The researchers expect that this and other novel approaches will expand live cell STED microscopy to three and more colors, eventually enabling imaging in three dimensions.

1. J. Bückers et al., Opt. Exp. 19, 3130–3143 (2011).

More BioOptics World Current Issue Articles
More BioOptics World Archives Issue Articles

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!