Fluorescence imaging enables efficient study of inhaled nanoparticles

Jan. 1, 2011
A real-time imaging system has enabled scientists at Beth Israel Deaconess Medical Center (BIDMC) and the Harvard School of Public Health to track near-infrared (NIR) fluorescent nanoparticles as they moved from the airspaces of the lungs, into the body and out again.

A real-time imaging system has enabled scientists at Beth Israel Deaconess Medical Center (BIDMC) and the Harvard School of Public Health to track near-infrared (NIR) fluorescent nanoparticles as they moved from the airspaces of the lungs, into the body and out again. The resulting knowledge promises to help develop therapeutic agents to treat pulmonary disease, as well as offer a greater understanding of the health effects of air pollution.1

The study aimed to determine the characteristics and parameters of inhaled nanoparticles that mediate their uptake into the body—from the external environment, across the alveolar lung surface and into the lymphatic system and bloodstream, and eventually to other organs. The researchers used the FLARE (Fluorescence-Assisted Resection and Exploration) imaging system and systematically varied the chemical composition, size, shape and surface charge of a group of NIR fluorescent nanoparticles to compare them. The team then tracked the nanoparticles' movement in the lungs of rat models, and verified results using conventional radioactive tracers. Their results established that non-positively charged nanoparticles, smaller than 34 nm in diameter, appeared in the lung-draining lymph nodes within 30 minutes. They also found that nanoparticles smaller than 6 nm in diameter with equal positive and negative charge traveled to the draining lymph nodes within just a few minutes, and were subsequently cleared by the kidneys.

These findings promise to help drug makers design and optimize particles for delivery by inhalation, and may also guide assessment of the health effects of particulate pollutants.

1. H.S. Choi et al., Nature Biotechnology 28: 1300-1303 (2010)

More BioOptics World Current Issue Articles
More BioOptics World Archives Issue Articles

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!