NEUROLOGY/MULTIPHOTON MICROSCOPY/AUTISM RESEARCH: High-resolution serial two-photon tomography images whole brains fast

March 1, 2012
A method of two-photon microscopy is now enabling highly detailed whole-brain imaging.

A method of two-photon microscopy is now enabling highly detailed whole-brain imaging. Neuroscientists at Cold Spring Harbor Laboratory (CSHL; Cold Spring Harbor, NY) and and the Massachusetts Institute of Technology (MIT; Boston, MA) developed an approach for automating and standardizing the sectioning and sequential imaging at precise spatial orientations of brain samples. They worked in conjunction with TissueVision (Cambridge, MA) to produce the new technology, called serial two-photon tomography (STP tomography).1 (See the article on "tissue cytometry" for more on whole-organ imaging: www.bioopticsworld.com/articles/2008/07/beyond-cell-cytometry-tissue-cytometry.html). The approach promises to make whole-brain mapping routine, and to facilitate research in mouse models of schizophrenia, autism, and other human brain disorders.

STP tomography makes possible high-throughput fluorescence imaging of whole mouse brains through robotic integration of two fundamental steps: Tissue sectioning and fluorescence imaging. In a paper describing their work, the researchers detail several experiments that highlight the sensitivity and application of the new approach—and they say it is mature enough to be used in whole-brain mapping efforts such as the Allen Mouse Brain Atlas project.

A mouse brain, imaged with STP tomography at 20x at 0.5 μm resolution, shows GFP-expressing pyramidal neurons in the hippocampus and cortex. (Image courtesy of CHSL)

The technology can scan at resolution levels ranging from 1–2 μm to <1 μm; scans at the highest resolution level take about 24 hours, compared to one week using current methods, says associate professor Pavel Osten, who led the work. The team was able to produce full data sets, including final images, in 6.5 to 8.5 hours per brain, depending on the resolution. Each set of 260 coronal (top-to-bottom) slices was assembled by computer into 3-D renderings, which can be broadly manipulated to reveal hidden structures and features. At 10x magnification, the researchers were able to "visualize the distribution and morphology of green-fluorescent protein-labeled neurons, including their dendrites and axons," Osten notes.

The team has already identified susceptibility genes for both schizophrenia and autism, including more than 250 for autism spectrum disorders. Dr. Alea Mills at CSHL has published a mouse model of one genetic aberration in autism, and has many more underway.

1. T. Ragan et al., Nat. Meth., doi:10.1038/nmeth.1854 (2012).

More BioOptics World Current Issue Articles
More BioOptics World Archives Issue Articles

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!