MULTIPHOTON MICROSCOPY/OPTICAL COHERENCE TOMOGRAPHY: Powerhouse optical techniques combine to reveal cancer mechanisms

Nov. 18, 2013
For the first time, researchers are able to track the movement of molecules, cells, and fluids within tumors; examine abnormalities in the blood vessel network inside them; and observe how the tumors were affected by treatments.

For the first time, researchers are able to track the movement of molecules, cells, and fluids within tumors; examine abnormalities in the blood vessel network inside them; and observe how the tumors were affected by treatments. The technique promises to help researchers better understand the intricate workings of human cancer and aid in drug discovery to treat cancer.

The technique, created by Dai Fukumura MD, Ph.D., and his long-term collaborators at Massachusetts General Hospital and Harvard Medical School (both Boston, MA), combines multiphoton laser-scanning microscopy (MPLSM), which is a commercially available advanced fluorescence imaging technology, and optical frequency domain imaging (OFDI), a form of optical coherence tomography (OCT) that images tissues by their light scattering properties.

"MPLSM overcomes many of the limitations from which conventional microscopy and confocal microscopy suffer, and OFDI provides robust large volume imaging data," said Fukumura, adding that while the new approach would be too expensive to be used for routine diagnostic purposes, it promises to help researchers better understand the intricate workings of human cancer and aid in drug discovery to treat cancer. "These optical imaging approaches can provide unprecedented insights in the biology and mechanisms of cancer," he said. The research was presented at Frontiers in Optics 2013 (presentation FW5A.2, "Dissecting Tumor Biology Using Intravital Microscopy and Optical Frequency Domain Imaging").

About the Author

Barbara Gefvert | Editor-in-Chief, BioOptics World (2008-2020)

Barbara G. Gefvert has been a science and technology editor and writer since 1987, and served as editor in chief on multiple publications, including Sensors magazine for nearly a decade.

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!