Low-light CMOS biosensor enables detection of four copies of pathogen DNA per sample

May 22, 2015
Anitoa Systems has demonstrated handheld, real-time qPCR using its ultra-low-light CMOS biosensor.

Anitoa Systems (Palo Alto, CA), in a collaboration with Zhejiang University of China, has demonstrated a handheld, real-time quantitative-polymerase-chain-reaction system (qPCR) using Anitoa's ultra-low-light CMOS biosensor. The company's handheld qPCR can detect several types of pathogen DNA and RNA, including hepatitis B/C and E. coli. It has achieved detection limit of four copies per sample and over nine orders of magnitude in dynamic range.

Related: Infectious disease control with portable CMOS-based diagnostics

A key component of the handheld qPCR system is Anitoa's CMOS biosensor chip. It formed a single-chip fluorescence imaging system, tightly integrated with a miniature thermal cycler, to perform real-time imaging of multiple PCR reaction sites simultaneously without the need for a scanning mechanism commonly used by qPCR systems today.

Released in September 2014, the company's CMOS biosensor has the needed sensitivity to replace photomultiplier tubes (PMTs) and cooled CCDs in a wide range of medical and scientific instruments, such as a qPCR instrument. Its ultra-low-light sensitivity (3e-6 lux) is crucial for achieving good signal-to-noise ratio (SNR) in imaging molecular interactions based on the fluorescence or chemiluminescence signaling principle.

Now, the company is developing a low-cost, portable qPCR-based molecular diagnostics platform as a globally affordable tool to help fight infectious diseases worldwide. By using the company's CMOS biosensor instead of bulkier and more expensive CCD or PMT devices for fluorescence imaging, system designers can now achieve significant space and cost savings by doing away with those auxiliary components found in a PMT- or CCD-based system necessary for signal acquisition, high voltage supply and regulation, and heat ventilation. In addition, multiple CMOS biosensors can be deployed to provide wavelength-multiplexing imaging capability, enabling sensing of multiple reaction sites.

A CMOS-based qPCR reference design that includes a thermal cycler and matching fluorescence imaging subsystem is available from the company for selected OEM customers. Inquiries may be sent to [email protected].

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!