Fluorescence imaging method visualizes nine structures in one measurement

March 23, 2016
A novel strategy for fluorescence lifetime imaging (FLIM) allows visualizing nine different target molecules at the same time.

A research collaboration involving the University of Würzburg (Würzburg, Germany), the University of Göttingen (Göttingen, Germany), and PicoQuant (Berlin, Germany) has discovered a novel strategy for fluorescence lifetime imaging (FLIM) that allows visualizing nine different target molecules at the same time.

Related: Fluorescence 'lifetime' moves toward clinical application

As a fundamental imaging technique in life sciences, FLIM makes it possible to visualize structures and processes in cells by exciting molecules with light and employing the lifetime information of the triggered fluorescence. The newly devised approach, named spectrally resolved FLIM (sFLIM), uses three lasers with different wavelengths pulsing in an alternating pattern for exciting the molecular labels. As these labels exhibit subtle differences in their emission spectra and fluorescence decay patterns, the collected data can be analyzed through a software algorithm, allowing distinction between them with unparalleled precision.

The research team managed to label, image, and identify nine different structures in a cell simultaneously, including the F-Actin protein structure of the cytoskeleton, the nuclear membrane, or newly created DNA.

Part of a cell labeled for tubulin with Abberior STAR 635p (green) and giantin with Atto647N (red) utilizing a single stimulated emission depletion (STED) laser wavelength, where the two species have been separated by fast pattern matching. (Sample courtesy of Markus Sauer, University of Würzburg, Germany)

The high sensitivity of sFLIM also allows using the same fluorescent dye to label three different cell structures at once, with the ability to still clearly distinguish them because of slight fluorescence lifetime variations induced by the chemical environment. The method was realized with the MicroTime 200 microscopy platform and the SymPhoTime 64 data acquisition and analysis software.

Full details of the work appear in the journal Nature Methods; for more information, please visit http://dx.doi.org/10.1038/nmeth.3740.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!