Light microscopy method looks to uncover DNA transcription process

Dec. 8, 2014
Ibrahim Cissé, assistant professor of physics at the Massachusetts Institute of Technology (MIT)'s Department of Physics, has used a light microscopy method to solve the mystery of DNA transcription, molecule by molecule, in living cells and in real time.

Biochemical techniques that isolate molecules in test tubes or label them in fixed cells destroy the conditions that make weak and transient interactions possible. Light microscopy can preserve those conditions, but most biomolecules are too small and interact too closely to be distinguished with the light diffraction limit of 200 nm.

But Ibrahim Cissé, assistant professor of physics at the Massachusetts Institute of Technology (MIT; Cambridge, MA)'s Department of Physics, has used a light microscopy method to solve the mystery of DNA transcription, molecule by molecule, in living cells and in real time.

For Cissé to follow transcription as it unfolds, he would have to circumvent the limitations of conventional techniques for studying biomolecules. To do this, he adapted a fluorescence imaging method called photoactivation localization microscopy (PALM), which activates fluorescent tagging proteins at random and then applies a statistical algorithm to determine the exact location of each protein with nanometer accuracy within the pixel of light. When Cissé repeats the process at high speed and volume, he can map the precise location of tagged biomolecules as they cluster at a transcription site or trace the path of a single transcription factor as it moves across the nucleus. Furthermore, by developing a temporal correlation method coupled with PALM, called tcPALM, Cissé can get direct access to the clustering dynamics for the first time.

Ibrahim Cissé, assistant professor of physics at MIT. (Photo courtesy of the Department of Physics)

Recently, Cissé used tcPALM to show that the transcriptional enzyme RNA Polymerase II (Pol II) clusters for just a few seconds as transcription begins. The result is surprising, given that it takes several minutes for a full RNA sequence to be synthesized. When Cissé suppressed and then reactivated transcription just before imaging, he observed Pol II clustering at unusually high concentrations. When he blocked Pol II from escaping the promoter and transcribing the DNA, the cluster of Pol II around the promoter didn't dissipate.

Cissé theorizes that Pol II clusters are coupled with both transcription initiation and promoter escape because of the way the cell uses weak and transient interactions to regulate transcription. In previous studies, scientists have shown that when Pol II interacts with the promoter region, it only ends up forming a pre-initiation complex that synthesize RNA about 1 percent of the time. Cissé thinks this inefficiency might be a good thing: Instead of every random collision of a polymerase and promoter resulting in an active gene, the cell may use clustering and other mechanisms to initiate transcription when and where it needs to.

-----

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Precision-Engineered Longpass Filters

Sept. 5, 2024
Discover our precision-engineered Longpass Filters, designed for high transmission and optimal wavelength separation. Perfect for fluorescence imaging, microscopy, and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!