Fluorescence approach detects drug-resistant tuberculosis in living bacilli

Aug. 10, 2012
Scientists at the Antwerp Institute of Tropical Medicine, using an updated approach to a fluorescence technique, have succeeded in detecting drug-resistant tuberculosis (TB) in living bacilli. What's more, their technique enables detection in resource-limited locations.

Scientists at the Antwerp Institute of Tropical Medicine (ITG; Antwerp, Belgium), using an updated approach to a fluorescence technique, have succeeded in detecting drug-resistant tuberculosis (TB) in living bacilli. What's more, their technique enables detection in resource-limited locations.

Viewing sputum smears under a microscope is still the gold standard for TB screening, but it cannot differentiate between living and dead bacilli. And even though polymerase chain reaction (PCR) technology can determine whether or not the bacillus is from a resistant strain, it is unfeasible in resource-limited areas due to its cost. It also is impossible to cultivate every sample and then target it with every possible antibiotic to survey which ones still work for an individual patient.

Recognizing these limitations, lead scientist Armand Van Deun and colleagues used vital staining with fluorescein diacetate (FDA) to only stain living TB bacilli in a sputum smear, enabling them to immediately see those bacilli escaping treatment. And they improved the detection of the luminous bacilli by replacing a fluorescence microscope with an LED illumination microscope.

In this FDA test under an LED illumination microscope, the fluorescent lines are living tuberculosis bacilli on a background of cellular debris from human sputum. (Image courtesy of ITG)

The scientists' test enables detection of a high number of resistant TB bacilli that otherwise would have been discovered too late or not at all. They report that three times more patients could directly switch to the correct second-line treatment without losing time on a regimen ineffective against their resistant bacilli. And their technique can cut in half the number of cases where doctors start a retreatment because it ascertains that the bacilli detected by fluorescence microscopy in fact are dead ones, which do not require further treatment.

Together with colleagues in Bangladesh, the scientists tested their approach in the field for four years, thanks to a grant made possible by the Damien Foundation.

For more information on their work—which appears in The International Journal of Tuberculosis and Lung Disease—please visit http://dx.doi.org/10.5588/ijtld.11.0166.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Laser Focus World has gone mobile: Get all of the mobile-friendly options here.

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Working with Optical Density

Feb. 26, 2025
Optical Density, or OD, is a convenient tool used to describe the transmission of light through a highly blocking optical filter.

Finding the Right Dichroic Beamsplitter

Feb. 26, 2025
Unsure how to select the right dichroic beamsplitter? Explore our selection guide for our wide variety of 45º dichroic beamsplitters.

Measurement of Optical Filter Spectra

Feb. 26, 2025
Learn about the limitations of standard metrology techniques and how Semrock utilizes different measurement approaches to evaluate filter spectra.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!