Microscopy technique heightens understanding of brain cell death during stroke

Oct. 22, 2010
One of the major impediments to understanding how brain cells die during a stroke and identifying new ways to protect them has been the long-standing inability to image strokes, or ischemic events, in living tissue.

One of the major impediments to understanding how brain cells die during a stroke and identifying new ways to protect them has been the long-standing inability to image strokes, or ischemic events, in living tissue. Now researchers at Cornell University, led by Research Associate Nozomi Nishimura, have developed methods to induce strokes in animal models and image the events as they unfold.

"We can see the dynamics of interaction," Nishimura says, adding that some neurons most likely die due to interactions with many different types of cells, including immune system cells, vascular cells, astrocytes and glial cells. She and her colleagues visualize intercellular dynamics via two-photon excited fluorescence (TPEF) microscopy, which is able to image individual cells and capillaries. Employing relatively long wavelengths of light, Nishimura and her colleagues have succeeded in imaging at greater depths into tissue than has been possible to date.

Nishimura and her colleagues have also developed a method to induce localized lesions within rodent models. They adapted a technology, femtosecond laser ablation, typically used in micromachining of solid materials, for a novel biological use. This ability to induce specific small lesions is particularly important to creating viable models in which to study the progression typical of dementia. According to Nishimura, it is becoming clear that many elderly people suffering from dementia have experienced a series of microstrokes, triggering cumulative damage. "How is it that these small bleeds or blood clots affect neurons?" she asks, adding that the ability to introduce and then image microstrokes in a model system should shed light on how damage might best be mitigated.

The laser ablation system is also being explored for use in surgical manipulation and in examining tumor migration; specifically, how cells shed from tumors might also block blood vessels.

The presentation, "Nonlinear Optical Tools for Studying Small-Stroke at Microscopic Scales," takes place on October 26 at the Frontiers in Optics (FiO) 2010/Laser Science XXVI—the 94th annual meeting of the Optical Society (OSA), which is being held together with the annual meeting of the American Physical Society (APS) Division of Laser Science at the Rochester Riverside Convention Center in Rochester, NY, from October 24-28.

Source: Cornell University

Posted by Lee Mather

Follow us on Twitter

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!