Near-IR photodynamic therapy approach effectively targets prostate cancer

June 27, 2017
The efficacy and optimal dose for targeted photodynamic therapy to treat prostate cancer before and during surgery has been shown. 

Researchers at Radboud University (Nijmegen, Netherlands) and the Clinic for Nuclear Medicine at University Hospital (Essen, Germany) have demonstrated the efficacy and optimal dose for targeted photodynamic therapy to treat prostate cancer before and during surgery.

Related: 'Smart beacons' target cancer tumors

Prostate-specific membrane antigen (PSMA) was targeted with an anti-PSMA antibody radiolabeled with the tracer indium-111 (111In) and coupled with specialized photosensitizers that cause cell destruction upon exposure to near-infrared (near-IR) light. The combined formula is 111In-DTPA-D2B-IRDye700DX.

"Coupling the photosensitizer to an imaging agent that targets PSMA on the tumor surface makes it possible to selectively and effectively destroy prostate tumor remnants and micrometastases while surrounding healthy tissues remain unaffected," says Susanne Lütje, MD, Ph.D., lead author of the study from the Department of Radiology and Nuclear Medicine at Radboud University Medical Center and the Clinic for Nuclear Medicine at University Hospital.

This technique optimizes prostate cancer care by allowing visualization of tumors prior to surgery by providing real-time guidance to surgeons in the operating room, and by priming tumors for photodynamic therapy when surgery isn't enough or risks damage to sensitive structures.

A gamma probe is used to detect PSMA-expressing tumor cells. Photosensitizers can then be activated with light in the near-IR, which causes them to emit fluorescence, or oxygen radicals, that damage PSMA over-expressing tumor tissues.

Study results showed effective localization of the drug at the site of tumors, as well as effective imaging and photodynamic therapy via near-IR exposure in mice. Further study in humans is needed before this procedure could be made available for prostate cancer patients.

"In the future, this novel approach to prostate cancer could significantly improve the effectiveness of treatment, reduce recurrent disease and ultimately prolong survival and protect quality of life for patients," Lütje says.

The researchers presented the work during the 2017 Annual Meeting of the Society of Nuclear Medicine and Molecular Imaging (SNMMI), held June 10-14, 2017, in Denver, CO.

Full details of the work appear in the Journal of Nuclear Medicine.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Advanced Spectral Accuracy: Excitation Filters

Sept. 5, 2024
Enhance your fluorescence experiments with our Excitation Filters. These filters offer superior transmission and spectral accuracy, making them ideal for exciting specific fluorophores...

Raman Filter Sets for Accurate Spectral Data

Sept. 5, 2024
Enhance your Raman spectroscopy with our specialized Raman Filter Sets. Designed for high precision, these filters enable clear separation of Raman signals from laser excitation...

Precision-Engineered Longpass Filters

Sept. 5, 2024
Discover our precision-engineered Longpass Filters, designed for high transmission and optimal wavelength separation. Perfect for fluorescence imaging, microscopy, and more.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!