Optical imaging helps understand the mechanics of blast traumatic brain injury

Feb. 15, 2017
An optical imaging method explores the mechanics of cavitation-induced injury to better understand blast traumatic brain injuries.

The scale at which blast traumatic brain injury (bTBI) injuries occur and manifest is unknown, but recent studies suggest that rapid cavitation bubble collapse may be a potential mechanism for studying it. So, Jonathan Estrada, a doctoral student in the School of Engineering at Brown University (Providence, RI), and colleagues are using an optical imaging method to explore the mechanics of cavitation-induced injury to better understand bTBIs.

Related: Photobiomodulation and the brain—traumatic brain injury and beyond

Estrada is working under the guidance of Christian Franck, along with colleagues from Brown University and the University of Michigan (Ann Arbor, MI). The research team is using a laser, an optical microscope, and rat neurons inside a gel-like substance to mimic brain tissue to examine bTBIs. The laser pulse is sent through the "brain tissue" under the microscope while a high-speed camera—recording 270,000 frames/s—captures the laser creating a bubble, the bubble breaking, and the damage this causes to the rat neurons. The team imaged affected neurons before and immediately after injury, Estrada explains.

The significance of the research team's work is that while postmortem studies have begun to show differences in brain pathology—such as astroglial (star-shaped glial cell) scarring—between patients exposed to blast injury and those with bTBI, the manifestation of injury over time still isn't well understood. "Our work, using the simplified bubble and neuron culture model, aims to begin bridging the gap between the mechanics of blast injury and cell damage," Estrada says.

Although the results are in the preliminary stage, the researchers found that the maximum bubble radius is nearly identical to the zone of neuron fragmentation immediately after injury, Estrada adds. A previous study done by Estrada and his colleagues focused on concussive (blunt) TBI via uniaxial compression of neurons, which found that injury was distributed over entire cultures rather than localized to one area, he says.

A confocal image of neurons before and after cavitation injury was induced. (Image credit: Estrada et al.)

The research team's method allows them to see the injury history of the cells within cultures—before and just after injury with live-cell fluorescence, during injury with high-speed imaging, and then injury manifestation at later time points via immunostaining. "Quantifying temporal injury history is essential to understanding, diagnosing, and working toward informed treatment of blast TBI," Estrada notes.

Estrada presented the research team's work during the Biophysical Society's 61st Annual Meeting (Feb. 11-15, 2017; New Orleans, LA) on February 13th. To view the abstract, please visit www.abstractsonline.com/pp8/#!/4279/presentation/1225.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!