QUANTITATIVE MICROSCOPY/LABEL-FREE IMAGING: NIR quantitative phase imaging visualizes cellular dynamics through silicon

Nov. 18, 2013
A team of scientists from the University of Texas at Arlington and the Massachusetts Institute of Technology (MIT; Cambridge, MA) has overcome past limitations on quantitative microscopy through an opaque medium by using a combination of quantitative phase imaging and near-infrared (NIR) light.

A team of scientists from the University of Texas at Arlington and the Massachusetts Institute of Technology (MIT; Cambridge, MA) has overcome past limitations on quantitative microscopy through an opaque medium by using a combination of quantitative phase imaging and near-infrared (NIR) light.1 A decade-old "label-free" technique, quantitative phase imaging uses shifts in phases of light, instead of staining, to facilitate imaging.

The approach enables quantitative observation of cellular processes taking place in lab-on-a-chip devices. "To the best of our knowledge, this is the first demonstration of quantitative phase imaging of cellular structure and function in silicon environment," said Samarenda Mohanty, head of the Biophysics and Physiology Laboratory at UT Arlington.

The technology has potential application in drug development and disease diagnosis. "Silicon-based micro devices known as labs-on-a-chip are revolutionizing high-throughput analysis of cells and molecules for disease diagnosis and screening of drug effects. However, very little progress has been made in the optical characterization of samples in these systems," said Bipin Joshi, a recent graduate and lead author on the paper. "The technology we've developed is well suited to meet this need."

The researchers proved success in analyzing specimens through a silicon wafer in two instances. In one, they accomplished full-field imaging of the features of red blood cells to nanometer-thickness accuracy. In another, they observed dynamic variation of human embryonic kidney cells in response to change in salt concentration. Mohanty believes that the work could lead to noninvasive monitoring of neuronal activity.

"We envision that this significantly expands the visualization possible in silicon-based microelectronic and micromechanical devices," added Ishan Barman, now an assistant professor at Johns Hopkins University.

1. B. Joshi et al., Sci. Rep., 3, 2822 (2013); doi:10.1038/srep02822.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!