Cambridge IVF develops new protocols for light microscopy-based sperm testing

May 19, 2015
Cambridge IVF is working to develop new protocols to improve the reliability of its light microscopy-based sperm testing.

Cambridge IVF (Cambridge, Cambridgeshire, England) is working to develop new instrumentation and protocols to improve the reliability of its light microscopy-based sperm testing.

Related: Raman spectroscopy enables assessment of individual sperm candidates for IVF

In andrology (the study of human reproduction), sperm testing for properties such as size, number, and motility is not consistently controlled. One parameter key to successful testing is temperature. It is vital to test sperm at normal body temperature (i.e., 37°C); if the temperature is too low, sperm motility is reduced, and if the temperature is too high, the sperm may be irreparably damaged. Either way, the diagnosis may be incorrect, leading to the wrong treatment being offered.

Cambridge IVF performs sperm testing using a basic light microscope to observe sperm performance on a heated glass slide. But control of the temperature has been seen as arbitrary from lab to lab, so there can be a wide variance in reported results. Stephen Harbottle, Cambridge IVF's consultant embryologist, has observed the inconsistencies of testing over the years: "There is a real need for consistency of testing in andrology laboratories. At present, there is inconsistency with labs performing tests using non-validated or out-of-date procedures with limited regulation or control. Equipment is not standardized; it is not being calibrated and validated against reference systems or used in accordance with best practice recommendations in some test centers. Testing should be done to a validated standard operating procedure and labs performing tests should ensure they are registered to an appropriate external quality assurance scheme."

The Linkam warm stage for andrology now in use at Cambridge IVF.

Harbottle and Cambridge IVF worked with Linkam Scientific Instruments (Tadworth, Surrey, England) to produce a temperature-controlled microscopy stage that can maintain a user-defined temperature between ambient and 60°C to +/-0.2°C while allowing high-resolution observation. The resulting approach incorporates a simple and visual temperature validation using a specially developed liquid-crystal temperature sensitive slide to enable temperature calibration.

-----

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!