MICROSCOPY: 3-D microsurgery uses light-sheet fluorescence microscopy

July 1, 2007
In light-sheet microscopy, an illuminator encompasses the entire focal plane of a microscope objective lens and projects a microns-thick light sheet that illuminates only the specimens that lay within the objective’s focal depth.

In light-sheet microscopy, an illuminator encompasses the entire focal plane of a microscope objective lens and projects a microns-thick light sheet that illuminates only the specimens that lay within the objective’s focal depth. Scientists at the European Molecular Biology Laboratory (EMBL; Heidelberg, Germany) are using this technique combined with fluorescence microscopy and plasma-induced laser-ablation methodologies to study in vivo biological functions and perform three-dimensional (3-D) laser microsurgery.1

The researchers use the laboratory’s single-plane illumination microscope (SPIM)-an implementation of light-sheet-based fluorescence microscopy-combined with a pulsed-laser-based microsurgery setup in a single instrument to image and manipulate biological processes ranging in scale from microns to millimeters.2

In the optical setup, laser microsurgery is performed by a frequency-tripled Nd:YAG laser at 355 nm with 470 ps pulse duration and a pulse repetition rate up to 1 kHz. The laser is focused by a series of lenses with different numerical apertures to tailor the beam diameter to the size of the feature to be ablated or cut. The software-controlled ablation beam is coupled into the SPIM detection path using a dichroic mirror. The specimen can be translated along the z-axis for improved depth imaging during ablation or observation.

In one of several experiments, microtubules are targeted and dissected using the SPIM nanoscalpel system (see figure). Microtubules, confined in a glycerol solution, are illuminated at a fluorescence wavelength of 514 nm. One of the microtubules is cut using 50 pulses of the UV ablation laser with individual energies of 40 ± 5 nJ with a 1 kHz pulse repetition rate. The speed and tight focus of the ablation process minimizes ultraviolet photobleaching of the microtubules and reduces disturbances of the surrounding microtubules in solution.

In another experiment, the researchers performed 3-D microsurgery on a millimeter-scale caudal zebrafish fin. A section of fin was cut by 15 UV pulses with individual energies of 0.57 ± 0.03 µJ at a repetition rate of 800 Hz. Although 3-D fluorescence images show photobleaching in the vicinity of the laser cuts, transmission images demonstrate precise material removal, again with limited disturbance to surrounding tissue.

“The primary rationale for developing such a 3-D nanoscalpel was to be able to perform laser dissection deep into embryos but also in 3-D cell clusters,” said researcher Emmanuel G. Reynaud. “In fact, in the body, cells exist in complex 3-D arrangements. These arrangements are critical to the functions in the body and provide much more faithful replicates of cell behavior in vivo than is possible using two-dimensional substrata. Now, with this tool we can perform single-cell ablation anywhere in a cell cluster and follow the consequences, macrophage migration, tissue repair, and cell response in a more physiological and relevant environment.”

REFERENCE

1. C.J. Engelbrecht et al., Optics Express15(10) 6420 (May 14, 2007).

2. K. Greger et al., Rev. Scientific Instruments 78, 023705 (2007).

About the Author

Gail Overton | Senior Editor (2004-2020)

Gail has more than 30 years of engineering, marketing, product management, and editorial experience in the photonics and optical communications industry. Before joining the staff at Laser Focus World in 2004, she held many product management and product marketing roles in the fiber-optics industry, most notably at Hughes (El Segundo, CA), GTE Labs (Waltham, MA), Corning (Corning, NY), Photon Kinetics (Beaverton, OR), and Newport Corporation (Irvine, CA). During her marketing career, Gail published articles in WDM Solutions and Sensors magazine and traveled internationally to conduct product and sales training. Gail received her BS degree in physics, with an emphasis in optics, from San Diego State University in San Diego, CA in May 1986.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!