Microscopy shows how sepsis from staph infection causes organ failure

July 27, 2018
Using intravital microscopy, researchers discovered the most important target of the Alpha Toxin and how to neutralize the danger.

Scientists have known for some time that one of the reasons a Staphylococcus aureus (staph) infection is so deadly is that the bacteria send out a toxin, known as Alpha Toxin (AT), which quickly worsens sepsis. Using intravital microscopy, researchers at the University of Calgary Cumming School of Medicine's (CSM) Snyder Institute for Chronic Diseases (Calgary, AB, Canada) have discovered the most important target of the toxin and how to neutralize the danger.

Related: Microscope detects one million-plus biomarkers for sepsis in 30 minutes

With the microscopy method, the researchers discovered that the toxin causes platelets to respond abnormally in mice. Platelets' primary role is to help stop bleeding in mammals after injury. What's relatively unknown is that platelets also play a role in the body's defenses against bacteria. Normally, platelets coat bacteria to prevent the spread of a microbe throughout the patient. However, during sepsis caused by staph infection, as the amount of toxin in the bloodstream increases, the platelets aggregate to form clumps. Those clumps deposit in the liver and kidneys, causing serious damage and eventually organ failure.

"Once you understand exactly how an infection is impacting the body, you can target treatments to mitigate the infection so that the body can begin to heal," says Paul Kubes, Ph.D., professor in the Department of Physiology & Pharmacology and director of the Snyder Institute. "We knew clots were forming in the organs during sepsis from staph infection. Now we know where and why these clots are forming."

Next, the research team wanted to know whether an antibody that targets the toxin could be effective in preventing platelets from clumping. The researchers started working with drug company MedImmune (Gaithersburg, MD), which is conducting a phase ll clinical trial where an Alpha Toxin antibody that they have developed is given to intensive care unit patients prone to develop pneumonia caused by staph due to long-term use of a ventilator. Early indications are the antibody is effective in preventing lung damage.

"When we introduced the antibody to the bloodstream of the mice during sepsis, we saw an immediate reduction in the amount of clotting," says Bas Surewaard, Ph.D., a postdoc in the Department of Physiology & Pharmacology and first author of the study. "A single dose of the antibody reduced liver damage by 50%. By knocking out the toxin, the platelets could begin flowing in the blood stream again."

The findings help explain why some people who are taking antibiotics to kill staph infection still die from sepsis, because the antibiotics do not neutralize the toxin.

"Knowing how the toxin created by staph target platelets, we can now start looking at other bacteria that cause sepsis to see whether we can uncover a similar pattern and find antibodies that can be effective in those cases," Kubes says.

Full details of the work appear in the journal Cell Host & Microbe.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!