Label-free multimodal imaging system distinguishes between cell types

Nov. 21, 2019
The label-free multimodal imaging platform enables the study of cell cultures noninvasively without the need of any contrast agent.

Researchers at Osaka University (Osaka, Japan) have developed a label-free multimodal imaging platform that enables the study of cell cultures noninvasively without the need of any contrast agent.

The two researchersAssistant Professor Nicolas Pavillon and Associate Professor Nicholas I. Smith of the Immunology Frontier Research Center (IFReC) at Osaka Universityshowed how the label-free signals can be employed to create models that can detect the activation state of macrophage cells and distinguish between different cell types, even in the case of highly heterogeneous populations of primary cells.

"We devised specific statistical tools that allow for the identification of the best methods for detecting responses at the single-cell level, and show how these models can also identify different specimens, even within identical experimental conditions, allowing for the detection of outlier behaviors," says Smith.

The multimodal imaging platform they developed pairs quantitative phase microscopy and Raman spectroscopy, both of which are label-free techniques. In their paper that describes the work, they demonstrate the platform's ability to extract biomarkers based on cellular morphology and intracellular content. These approaches have been previously used to characterize specimens and identify cells from different originshowever, the measurement of finer features than the cell type with these techniques has proven to be challenging. 

The researchers' study findings show that the approach enables the study of live samples without requiring contrast agents, and can also achieve high sensitivity at the single-cell level. "In particular," says Pavillon, "our results show that this method can identify different cell subtypes and their molecular changes during the immune response, as well as outlier behaviors between specimens."

Full details of the work appear in the journal Science Advances.

Source: EurekAlert press release

Got biophotonics-related news to share with us? Contact Lee Dubay, Associate Editor, BioOptics World

Get even more news like this delivered right to your inbox

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!