OCT could enable brain tumor removal without ionizing radiation

June 18, 2015
An optical coherence tomography (OCT) imaging technique could shows which areas of a patient's brain have and do not have cancer.

Researchers at Johns Hopkins University (Baltimore, MD) have developed an optical coherence tomography (OCT) imaging technique that could provide brain surgeons with a color-coded map of a patient's brain that shows which areas have and do not have cancer.

Related: Photoacoustic imaging detects breast cancer without ionizing radiation

OCT operates on the same echolocation principle used by ultrasound scanners, but it uses light rather than sound waves to yield a higher-resolution image than does ultrasound. And unlike x-ray, computed tomography (CT) scans, or positron emission tomography (PET) scans, it delivers no ionizing radiation to patients.

A group led by Xingde Li, Ph.D., a professor of biomedical engineering, worked with Alfredo Quinones-Hinojosa, MD, a professor of neurosurgery, neuroscience, and oncology at the Johns Hopkins University School of Medicine and other collaborators. Carmen Kut, an MD/PhD student working in Li's lab, first built on the idea that cancers tend to be relatively dense, which affects how they scatter and reflect lightwaves. The team tried for three years to build their technique on this principle. Eventually, the researchers figured out that a second special property of brain cancer cells—that they lack the so-called myelin sheaths that coat healthy brain cells—had a greater effect on the OCT readings than did density.

Once they had found the characteristic OCT "signature" of brain cancer, the team devised a computer algorithm to process OCT data and, nearly instantaneously, generated a color-coded map with cancer in red and healthy tissue in green. "We envision that the OCT would be aimed at the area being operated on, and the surgeon could look at a screen to get a continuously updated picture of where the cancer is—and isn't," Li says.

An illustration of a new technique using optical coherence tomography (OCT) that could help surgeons differentiate a human brain tumor (red) from surrounding noncancerous tissue (green). (Credit: Carmen Kut, Jordina Rincon-Torroella, Xingde Li, and Alfredo Quinones-Hinojosa/Johns Hopkins Medicine)

So far, says Kut, the team has tested the system on fresh human brain tissue removed during surgeries and in surgeries to remove brain tumors from mice. The researchers hope to begin clinical trials in patients this summer.

Quinones-Hinojosa explains that MRI scanners designed to be wheeled over a patient on the operating table cost several millions of dollars each, and require an extra hour of operating room time to obtain a single image. By comparison, the team anticipates that the cost of an OCT-based system would run in the hundreds of thousands of dollars.

The system can potentially be adapted to detect cancers in other parts of the body, Kut says. She is working on combining OCT with a different imaging technique that would detect blood vessels to help surgeons avoid cutting them.

Full details of the work appear in the journal Science Translational Medicine; for more information, please visit http://dx.doi.org/10.1126/scitranslmed.3010611.

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!