Xenics SWIR line scan camera for spectroscopy, optical coherence tomography

Feb. 10, 2011
The Lynx SWIR high-resolution InGaAs line scan camera from Xenics features a 12.5 μm grid that offers 512, 1024 or 2048 pixels, a frame rate up to 40 kHz, and high sensitivity mode (HS) to high dynamic range mode (HDR), the latter of which is well suited to optical coherence tomography (OCT).

The Lynx SWIR high-resolution InGaAs line scan camera from Xenics (Leuven, Belgium) features a 12.5 μm grid that offers 512, 1024 or 2048 pixels, a frame rate up to 40 kHz, and high sensitivity mode (HS) to high dynamic range mode (HDR), the latter of which is well suited to optical coherence tomography (OCT). Its one-stage thermoelectric cooling expands to three-stage cooling for a higher signal-to-noise ratio, making it ideal for Raman or photoluminescence spectroscopy.

More Products

-----

PRESS RELEASE

Xenics Introduces SWIR High Resolution Line Scan Camera

Leuven, Belgium, 09 November 2010 --- Xenics, Europe's leading developer and manufacturer of advanced infrared detectors and customized imaging solutions, introduces its new SWIR high-resolution InGaAs line scan camera Lynx. The new camera platform features a 12.5μm grid offering 512, 1024 or 2048 pixels, various configurations ranging from a high sensitivity mode (HS) to a high dynamic range mode (HDR) and a frame rate up to 40 kHz. Lynx is fully optimized for integration in advanced solutions in industrial image processing and spectroscopy. At Vision 2010, Xenics exhibits in Booth 4E82.

With its innovative SWIR line-scan camera platform Lynx, Xenics is conquering the near infrared realm between 0.9 and 1.7 μm for high-resolution InGaAs line-scan cameras. Lynx provides high optical sensitivity and a broad dynamic range well suited for industrial image processing and optical coherence tomography (OCT). The new Lynx platform is based on Xenics' proven linear sensor series Xlin. Currently, there are three Lynx models offering line lengths of 512, 1024 or 2048 pixels at a pixel grid of 12.5 or 25 μm and pixel heights of 12.5 or 250μm to cover a wide range of high-resolution industrial and spectroscopy applications.

The Lynx sensor comes standard with a one-stage thermoelectric cooling, which can be expanded to three-stage cooling for a higher signal/noise ratio. In this way small signals in Raman or Photoluminescence Spectroscopy can be readily measured. The camera has a spectrometer flange and it can be equipped with C-mount compatible lenses.

Lynx offers a broad range of advanced techniques featured across the Xenics camera portfolio. The analog signal output of the InGaAs photodiodes is pre-processed on-chip via two CMOS read-out ICs (ROIC) with five integration capacities selectable individually or collectively at runtime. This yields a wide range of conversion characteristics to adapt to the required pixel size and application. Correlated double sensing compensates offset and reset noise, while a subsequent sample/hold stage decouples readout from integration. An analog multiplexer and pad driver transfers all pixel values sequentially to the camera's external analog/digial converter.

In its high sensitivity (HS) mode, Lynx offers a gain of 3.6e- per AD count. For applications where dynamic range is important, Lynx offers a signal to noise ration of up to 3.200:1. Lynx makes system integration easy through its very flexible user interface. Lynx outputs 14-bit image data via the fast CameraLink or its GigE Vision compatible Gigabit-Ethernet connection. Camera control and parameter selection is provided through a serial interface. Trigger inputs and outputs will synchronize image capturing with selected external events. A GPIO covering 2 inputs and 2 outputs allows to interface dynamically to PLC or PWM controlled systems.

With this set of advanced features, the new Lynx is well suited for near-infrared spectroscopy and image processing as a reliable quality assurance tool to uncover internal defects in the objects under test. Also, highly sensitive NIR cameras can analyze the weak electro-luminescence of solar modules and thereby help increase manufacturing yields.

A very interesting future use area of spectroscopy is optical coherence tomography (OCT), which promises annual growth rates of 60 percent. Near-infrared OCT can capture cross sectional images of human skin without the need to take invasive actions. As such Lynx offers a perfect tool for integration in systems for skin cancer detection.

About Xenics
Xenics is the leading developer of innovative infrared detection solutions for a wide range of applications. Xenics designs, manufactures and sells infrared detectors and cameras, both line-scan and 2-D, covering the infrared wavelength ranges from 0.4 to 14 micrometers. In addition, Xenics delivers custom products according to the agreed specification and planning. As a European vendor with a worldwide service and distributor network, Xenics is strategically placed to serve global markets with highly innovative products drawing on a strong science and technology background.

-----

Posted by Lee Mather

Follow us on Twitter, Facebook, and LinkedIn

Follow OptoIQ on your iPhone; download the free app here.

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!