New laser speeds Raman spectroscopy

Oct. 28, 2010
Physicist Robert Huber, who leads a junior research group at Ludwig Maximilian University (LMU; Munich, Germany), plans to study ways of extending Raman spectroscopy by speeding up data acquisition rates using a new class of laser.

Physicist Robert Huber, who leads a junior research group at Ludwig Maximilian University (LMU; Munich, Germany), plans to study ways of extending Raman spectroscopy by speeding up data acquisition rates using a new class of laser. Several approaches have been proposed to achieve this goal, but, in most cases, it is not yet possible to obtain undistorted signals (the scattered light) over the spectral range of interest with the desired sensitivity.

Dr. Huber developed a Fourier-domain modelocked (FDML) laser to solve the problem of obtaining scattered light quickly. FDML lasers are currently used for optical coherence tomography (OCT) in medical imaging, but they also have great potential in Raman spectroscopy, where they promise to provide a significant improvement in the performance of systems employed for spectroscopy and microscopy. This, in turn, might make it possible to apply the technique in situations where its use is currently impractical.

Dr. Huber becomes the latest recipient of one of the coveted Starting Grants awarded by the European Research Council (ERC) to support this work. The grant is worth €1.2 million over a period of five years.

Source: Ludwig Maximilian University Munich

Posted by Lee Mather

Follow us on Twitter

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!