PHOTODYNAMIC THERAPY/CANCER TREATMENT: SHG takes PDT to deep-lying tumors

July 29, 2014
Noninvasive photodynamic therapy (PDT) is very precise and boasts no long-term side effects. But because it typically uses visible light, it is normally effective only for the accessible tumors of oral and skin cancers.

Noninvasive photodynamic therapy (PDT) is very precise and boasts no long-term side effects. But because it typically uses visible light, it is normally effective only for the accessible tumors of oral and skin cancers. Now, a new method for activating photodynamic drugs deeper in the body is making other types of tumors accessible to the therapy.1

The technique depends on single-harmonic generation (SHG, also known as frequency-doubling) of infrared light, which travels deeper into tissue than visible light. Collagen, a naturally occurring protein found in connective tissue, has a frequency-doubling effect on the near-infrared (NIR) light used to irradiate a tumor through the skin. Deep in the body, the NIR beams are converted into visible light that activates NIR-sensitive, cancer-fighting drugs that have been injected into the body.

A laser-irradiated area in tissue (within the white square) shows live cancer cells (green) as well as cancer cells that have been killed (red) as a result of the irradiation. (Image courtesy of the University at Buffalo)

The SHG happens when the natural proteins and lipids interact with the NIR light through four-wave mixing and/or coherent anti-Stokes Raman scattering.

"We expect this will vastly expand the applications for an effective cancer phototherapy that's already in use," said Tymish Ohulchanskyy, research associate professor and deputy director for photomedicine at the University at Buffalo (UB; Buffalo, NY) Institute for Lasers, Photonics and Biophotonics (ILPB).

UB has applied for a patent, and the university's Office of Science, Technology Transfer and Economic Outreach (UB STOR) is discussing potential license agreements with companies interested in commercializing it.

The research is a collaboration between the ILPB, Shenzhen University (China), and Korea University, with which Paras Prasad, Ph.D.—SUNY Distinguished Professor in chemistry, physics, electrical engineering, and medicine at UB, ILPB's executive director, and leader of the work—is affiliated.

1. A. V. Kachynski et al., Nature Photon., doi:10.1038/nphoton.2014.90 (2014).

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!