CANCER TREATMENT/NANOTECHNOLOGY: Light-activated chemotherapy delivery limits side effects

May 19, 2014
With standard drug-delivery methods, toxic chemotherapy cocktails affect healthy tissue in addition to cancer.

With standard drug-delivery methods, toxic chemotherapy cocktails affect healthy tissue in addition to cancer. The result is unwanted side effects and decreased drug effectiveness. But new "nanoballoons," developed by researchers at the University at Buffalo (UB; New York), could serve as delivery vehicles to target chemotherapy drugs more precisely. Then, when hit by red laser light, the modified liposomes pop open to deliver concentrated doses.1 The work could not only improve cancer treatment, but also facilitate research.

Consisting of porphyrin (an organic compound) and phospholipid (a fat similar to vegetable oil), the nanoballoons, or porphyrin-phospholipid (PoP) liposomes, are delivered intravenously. And because they encapsulate the toxic drugs, they diminish the drugs' effect on healthy tissue.

A nanoballoon before (left) and after (right) being hit by a red laser. The laser causes the balloon to pop open and release the anti-cancer drugs directly at a tumor. (Image courtesy of Jonathan Lovell)

In laboratory experiments with mice, the researchers aimed a red laser at the target sites in the body, triggering the nanoballoons to release drugs. Once the laser is turned off, the nanoballoons close, taking in proteins and molecules that might induce cancer growth. Doctors using the technique could draw blood or take a biopsy to capture the liposomes—and thus retrieve a "chemical snapshot" of the tumor's environment, which is otherwise very difficult to assess.

Jonathan Lovell, Ph.D., UB assistant professor of biomedical engineering, admits that it is "still a bit of a mystery" why the liposomes open in reaction to red laser light, which is "otherwise harmless." He plans now to work to better understand the phenomenon and to optimize the process. Lovell, who received one of the National Institutes of Health's Early Independence Award grants to fund high-risk, high-reward research, hopes to begin human trials within five years. The UB team collaborated with researchers from the University at Albany (NY); Roswell Park Cancer Institute (also in Buffalo); and the University of Waterloo and McMaster University (both in Ontario, Canada).

1. K. A. Carter et al., Nat. Comm., 5, 3546 (2014); doi:10.1038/ncomms4546.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

White Paper: Improving Photonic Alignment

Dec. 18, 2024
Discover how PI's FMPA Photonic Alignment Technology revolutionized the photonics industry, enabling faster and more economical testing at the wafer level. By reducing alignment...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!