LIGHT SOURCES/CANCER DETECTION/ DENTISTRY: High performance mid-IR sources enable applications such as skin cancer detection

Jan. 21, 2014
A combination of germanium and tin (GeSn) can create LEDs that emit in the IR wavelength range, around 2 μm.

A combination of germanium and tin (GeSn) can create LEDs that emit in the IR wavelength range, around 2 μm. That's the finding of research led by James Kolodzey at the University of Delaware (UD, Newark) and involving colleagues there and at the University at Albany State University of New York (SUNY). The work may have health-care applications, said Kolodzey, particularly in the detection of skin cancer.1

LEDs and lasers based on GeSn emit mid-IR light and have applications in diagnostics, detection, dentistry, and potentially also drug development and laser surgery.

"Germanium-tin alloys may provide a new diagnostic tool for illuminating skin tissue and detecting skin changes visible only in the infrared spectrum. It may also have dental applications," he explained.

Traditionally, it has been questionable whether GeSn was capable of efficient light emission, but the researchers showed clear and efficient performance in the mid-IR. They doped with boron a GeSn/Ge p-n heterostructure's GeSn layers, which took the crystal structure of the Ge substrate beneath. They observed electroluminescence in the structure with an emission peak at about 0.57 eV (2.17 μm) and a total integrated optical output of 54 μW at a peak current of 100 mA at a temperature of 100 K.

He hopes eventually to develop a GeSn mid-IR laser able to output at higher power and with a beam more easily controlled than an LED. He thinks that this type of tool could aid in drug development or enable laser-surgery techniques.

1. J. P. Gupta, N. Bhargava, S. Kim, T. Adam, and J. Kolodzey, Appl. Phys. Lett., 102, 25, 251117 (2013).

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!