ONCOLOGY/CANCER TREATMENT: Study reveals potential of terahertz pulses to fight cancer

May 1, 2013
Terahertz (THz) photons don't have sufficient energy to break apart the bonds that bind DNA in a cell's nucleus.

Terahertz (THz) photons don't have sufficient energy to break apart the bonds that bind DNA in a cell's nucleus. But theoretical research suggests that picosecond THz pulses may amplify the natural vibrations of hydrogen bonds that bind DNA strands, and thus create openings between the strands. Now, new research has looked to discover whether this destabilization is sufficient to cause breaks.1

In their study, Canadian researchers at the University of Alberta (Edmonton, AB) and the University of Lethbridge (Lethbridge, AB) exposed laboratory-grown human skin tissue to intense THz pulses and found signs of DNA damage through a chemical marker called phosphorylated H2AX.

Confocal fluorescence images of tissue sample cross-sections show the incidence of γH2AX foci (localized green spots). Blue spots indicate cell nuclei. γH2AX-harboring cells (markers for double strand breaks in DNA) inside cell nuclei appear as blue-green spots. Panels from left to right show representative images for control (CT), low THz pulse energy (0.1 μJ), high THz pulse energy (1.0 μJ), and UVA-exposed tissues. (Image courtesy of Biomedical Optics Express)

Once DNA breaks occur, they can eventually lead to tumors if unrepaired. So it is interesting that simultaneously, the researchers noticed that the pulses triggered an increase in the levels of multiple tumor suppressor and cell-cycle regulatory proteins that facilitate DNA repair. This, they say, may suggest that DNA damage in human skin arising from such intense THz exposure could be quickly repaired, and the risk of carcinogenesis minimized.

The researchers hope to explore the potential therapeutic effects of intense THz radiation exposure to see if directed treatment with such pulses can become a new tool to fight cancer.

1. L. V. Titova et al., Biomed. Opt. Exp., 4, 559–568 (2013).

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!