Point-of-care silicon photonics platform in development for early cardiovascular disease detection

Feb. 5, 2015
A European team of reseachers has launched the CARDIS project, which will involve developing and validating an early-stage cardiovascular disease detection platform using integrated silicon photonics.

Imec (Leuven, Belgium), Medtronic (Maastricht, Netherlands), and Ghent University (also in Leuven), along with their project partners, have launched the CARDIS project, which will involve developing and validating an early-stage cardiovascular disease detection platform using integrated silicon photonics. The project's main goal is the investigation and demonstration of a mobile, low-cost device based on a silicon photonics integrated laser Doppler vibrometer. The concept will be validated for the screening of arterial stiffness, detection of stenosis, and heart failure in a clinical setting.

Related: Laser Doppler flowmetry demonstrates that coffee may help perk up blood vessels

Early identification of individuals at risk for cardiovascular disease (CVD) allows early intervention for halting or reversing the pathological process. This drives the CARDIS project team to develop a mobile, low-cost, noninvasive, point-of-care screening device for CVD. Assessment of arterial stiffness by measurement of the aortic pulse wave velocity (aPWV) is included in the latest ESC/ESH[2] guidelines for CVD risk prediction. Besides aPWV, early identification of arterial stenosis and cardiac contraction abnormalities can be used to improve CVD risk classification. To date, there are no tools available to screen a large population set at primary care level on these parameters, and individuals that are considered to be at low or moderate risk too often go undiagnosed.

CARDIS research activities include:

  • Investigation, design, and fabrication of the optical subsystems and components;
  • Integration of the subsystems and building of a multi-array laser interferometer system;
  • Development of a process flow scalable to high volumes for all subsystems and their integration steps;
  • Investigation and development of the biomechanical model for translating optical signals related to skin-level vibrations into underlying CVD physiological events; and
  • Validation of the system in a clinical setting.

Over the next three and a half years, CARDIS will be managed by imec through imec's associated laboratory located at Ghent University (Photonics Research Group in the Department of Information Technology). Medtronic Bakken Research Center will be responsible for the scientific and technical coordination of the project. Other industrial, academic, and clinical partners will bring their expertise to the project: SIOS Messtechnik (Germany), University College Cork Tyndall (Ireland), INSERM (France), Queen Mary University of London (United Kingdom), Universiteit Maastricht (Netherlands), Ghent University, and Fundico (Belgium).

The project is supported by the European Union's Horizon 2020 Framework Programme for Industrial leadership in Information and Communication Technologies (H2020).

Imec will be exhibiting at SPIE Photonics West 2015 (San Francisco, CA; booth 4635) and organizing a workshop and demonstration session on silicon photonics together with MOSIS (February 10-11). For more information, please visit www.imec.be/SPIE2015.

-----

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!