Synchrotron light identifies RNA double helix structure

Aug. 27, 2013
Scientists at McGill University have crystallized a short RNA sequence, poly (rA)11, and used data collected at the Canadian Light Source (CLS) and the Cornell High Energy Synchrotron to confirm the hypothesis of a poly (rA) double helix.

Scientists at McGill University (Montreal, QC, Canada) have crystallized a short RNA sequence, poly (rA)11, and used data collected at the Canadian Light Source (CLS; Saskatoon, SK, Canada) and the Cornell High Energy Synchrotron (Ithaca, NY) to confirm the hypothesis of a poly (rA) double helix. Their discovery, building on 50 years' worth of work by various scientists, will have interesting applications for research in biological nanomaterials as well as in fabricating bionanomachines (devices derived from living organisms that can perform medical diagnostics).

Related: AFM collaboration produces first in-situ view of DNA's double helix

“Bionanomachines are advantageous because of their extremely small size, low production cost, and the ease of modification,” explains Kalle Gehring, a biochemistry professor at McGill University who led the work. “Many bionanomachines already affect our everyday lives as enzymes, sensors, biomaterials, and medical therapeutics.”

Gehring adds that proof of the RNA double helix may have diverse downstream benefits for the medical treatments and cures for diseases like AIDS, or even to help regenerate biological tissues. His team initially was looking for information about how cells turn mRNA into protein when they made their discovery.

For the experiments, Gehring and a team of researchers used data obtained at the CLS Canadian Macromolecular Crystallography Facility (CMCF) to successfully solve the structure of poly (rA)11 RNA. CMCF Beamline Scientist Michel Fodje said the experiments were successful in identifying the structure of the RNA and may have consequences for how genetic information is stored in cells.

Structure of poly (rA) duplex showing the two strands in orange/yellow and green/blue. Ammonium ions that stabilize the structure are shown as black balls. (Image courtesy of Kathryn Janzen, Canadian Light Source)

“Although DNA and RNA both carry genetic information, there are quite a few differences between them,” says Fodje. “mRNA molecules have poly (rA) tails, which are chemically identical to the molecules in the crystal. The poly (rA) structure may be physiologically important, especially under conditions where there is a high local concentration of mRNA. This can happen where cells are stressed and mRNA becomes concentrated in granules within cells.”

With this information, researchers will continue to map the diverse structures of RNA and their roles in the design of novel bionanomachines and in cells during times of stress.

Research on the poly (rA) structure was funded by grants from the Natural Sciences and Engineering Research Council of Canada with support from the Canada Foundation for Innovation, the Government of Quebec, Concordia University, and McGill University.

The research team's paper appears in the journal Angewandte Chemie International Edition; for more information, please visit http://onlinelibrary.wiley.com/doi/10.1002/anie.201303461/abstract.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!