DNA sequencing through graphene nanopore is faster, more accurate

Jan. 15, 2016
The NIST study suggests the method could identify about 66 billion bases—the smallest units of genetic information—per second with 90 percent accuracy and no false positives. If demonstrated experimentally, the NIST method might ultimately be faster and cheaper than conventional DNA sequencing, meeting a critical need for applications such as forensics.
The NIST study suggests the method could identify about 66 billion bases—the smallest units of genetic information—per second with 90 percent accuracy and no false positives. If demonstrated experimentally, the NIST method might ultimately be faster and cheaper than conventional DNA sequencing, meeting a critical need for applications such as forensics.
The BioOptics World take on this story:

NIST researchers have developed a method for rapid, accurate DNA sequencing that involves pulling a DNA molecule through a tiny, chemically activated hole in graphene (an ultrathin sheet of carbon atoms) and detecting changes in electrical current. The researchers say that their method could identify about 66 billion bases/s with 90% accuracy and no false positives, and could be faster and cheaper than conventional DNA sequencing for applications such as forensics.

Related: DNA sequencing technologies: The next generation and beyond

Related: Laser fluorescence powers sequencing advances

Related: CSI: Multidimensional Raman spectroscopy

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!