Optical trap for on-chip virus and bacteria manipulation promising for cell sorting

July 2, 2009
JULY 2, 2009--A new type of optical trap (optical tweezers) that enables on-chip manipulation of bacteria, viruses and other particles has the potential to create smaller, cheaper versions of the sophisticated equipment used to perform fluorescence-activated cell sorting (FACS). The trap is part of an integrated optofluidic platform; researchers at the University of California, Santa Cruz (UCSC) created it while working to devise new sensor technology for biomedical analysis.

JULY 2, 2009--A new type of optical particle trap that enables on-chip manipulation of bacteria, viruses and other particles offers the potential to create smaller, cheaper versions of the sophisticated equipment used to perform fluorescence-activated cell sorting (FACS). The trap is part of an integrated optofluidic chip platform; researchers at the University of California, Santa Cruz's (UCSC's) Jack Baskin School of Engineering created it while working to devise new sensor technology for biomedical analysis and other applications.

"Ultimately, it could have applications for rapid detection of bacteria and viruses in hospitals, for cell sorting in research labs, and for process monitoring in chemical engineering," said Holger Schmidt, professor of electrical engineering and director of the W. M. Keck Center for Nanoscale Optofluidics at UCSC. "The capabilities of our optofluidic platform are continuing to grow. We have gone from the detection of single molecules and single viruses to now being able to control the movement of particles," he said.

Schmidt's group has received a $400,000 grant from the National Institutes of Health to explore particle trapping and sorting and other applications of the optofluidics platform. An article describing the optical trap for on-chip particle analysis has been published online by the journal Lab on a Chip. First author Sergei Kuhn was a postdoctoral researcher in Schmidt's lab and is now at the Max-Born Institute in Berlin. Coauthors include David Deamer and Philip Measor at UCSC and E. J. Lunt, B. S. Phillips, and A. R. Hawkins of Brigham Young University, where the optofluidic chips are fabricated.

Optical traps and "optical tweezers" use the momentum carried by the photons in a beam of light to exert forces on microscopic objects, enabling researchers to manipulate objects ranging from biological molecules to living cells. Schmidt's group developed a new way to perform optical trapping on a chip-based platform.

The technique relies on an earlier innovation from Schmidt's lab: a hollow-core optical waveguide that can direct a beam of light through a liquid-filled channel on a chip. To trap particles, the researchers used two laser beams at opposite ends of a channel. A particle gets trapped at the point where the forces exerted by the two beams are equal, and the particle can be moved by changing the relative power of the two laser beams.
"We can also use this like an optical leaf blower to push all the particles in a sample to the same spot and increase the concentration," Schmidt said. "The goal is to control the position and movement of particles through channels on a chip so they can be studied using fluorescence analysis and other optical methods."

For more information see the paper, Loss-based optical trap for on-chip particle analysis, in Lab on a Chip. See also the site for the Jack Baskin School of Engineering at UCSC.

Posted by Barbara G. Goode, [email protected], for BioOptics World.

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!