UV light-activated nanocrystals can ID low concentrations of cancer cells

Aug. 25, 2015
New, tiny nanocrystals could be used in the next generation of medical imaging technologies to light up cancer cells.

Researchers at Xi'an Jiaotong University (Xi'an, Shaanxi, China) have developed tiny nanocrystals that could be used in the next generation of medical imaging technologies to light up cancer cells.

Related: NIR imaging system lights up cancer so surgeons can operate with precision

Dr. Yaping Du and colleagues have developed a way to make high-quality nanocrystals of lanthanide oxybromides (LaOBrs), where the lanthanide metal can be lanthanum, europium, gadolinium, or terbium. They produce the materials by heating a readily available precursor material, which also allows them to incorporate triply charged europium ions (Eu3+) as "dopants" into any of the LaOBr nanocrystals.

In the study, the research team explains that their process allows them to very precisely control the exact size and shape of the nanocrystals and it is this that allows them to fine-tune the color of the light these materials produce when stimulated with ultraviolet (UV) light or electricity. Their tests with transmission electron microscopy on the nanocrystals, which form as ultrathin films, plates, and tiny particles, reveal the desired quality and uniformity. X-ray crystallography and UV spectroscopy provide additional detailed evidence about the internal structure of the nanocrystals at the atomic level.

Once they had established the chemical and physical details about the nanocrystals, the team then tested the particles as "staining" agents on a tissue sample containing liver cancer cells held on a microscope slide. They found that these diseased cells could take up the nanocrystals, whereas healthy cells do not—they preferentially "stain" the cancer cells, which can clearly be seen under the microscope through their bright luminescence. Such targeting and ease of identification of cancer cells could allow oncologists to spot tiny numbers of diseased cells in a biopsy sample.

The team also suggests that the bright luminescence of their LaOBr nanocrystals might also be used in low-energy lighting applications as an alternative to compact fluorescent bulbs and light-emitting diodes (LEDs).

Full details of the work appear in the journal Applied Materials Today; for more information, please visit http://dx.doi.org/10.1016/j.apmt.2015.06.001.

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!