Raman scattering method can detect pluripotent stem cells with high sensitivity

Sept. 1, 2016
An extremely sensitive technique for detecting pluripotent stem cells is at the scale needed for clinical applications.

Researchers at Emory University (Atlanta, GA) have developed an extremely sensitive technique for detecting pluripotent stem cells, which—despite their potential applications—can become tumors when transplanted.

The technique uses gold nanoparticles and Raman scattering, and the nanoparticles are conjugated with antibodies against the SSEA-5 or TRA-1-60 proteins that are found on the surfaces of stem cells. This could someday allow researchers to ensure that the stem-cell-derived cardiac muscle, neural progenitor, or pancreas cells are as pure as possible.

Schematic of how undifferentiated stem cells can be detected using Raman scattering. (Image credit: Biomaterials/Creative Commons)

In a paper describing the work, the researchers report that their Raman scattering technology can identify one stem cell out of a million differentiated cells—a level of sensitivity that is enough to detect stem cells at the scale needed for clinical applications. The research team's surface-enhanced Raman scattering (SERS) assays may facilitate safety assessment of cell preparations for transplantations that require a large quantity of cells, and are cost-effective, easy to use, and can be done within an hour, the researchers say.

Full details of the work appear in the journal Biomaterials; for more information, please visit http://dx.doi.org/10.1016/j.biomaterials.2016.07.033.

Sponsored Recommendations

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Using Optical Filters to Optimize Illumination in Fluorescence and Raman Systems

Feb. 27, 2025
Discover how Semrock products can help you get the most out of your fluorescence and Raman excitation designs, regardless of light source.

Melles Griot Optical Systems and Semrock Optical Filters for Spatial Biology

Feb. 26, 2025
Discover why a robust, high-throughput fluorescence imaging system with Semrock optical filters is key for Spatial Biology.

Understanding Practical Uses and Optimization Techniques for Fluorescence Optical Filters

Feb. 26, 2025
Learn about optical fluorescence and which optical filters to include in your instrument set up. See more with Semrock filter sets.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!