FTIR spectroscopy technique allows noninvasive cell imaging

May 31, 2016
Researchers used FTIR spectroscopic imaging to gather information about living cells.

Most of the current methods to analyze biological systems involve cell lysis, which destroys the sample. Once this process is complete, the cell lysate is analyzed to determine the contents of the cell. Furthermore, conventional imaging methods require added dyes or labels, but still do not provide complete chemical information about live cells and therefore do not always reveal vital data required for more complex diagnostics.

Recognizing this, researchers at Imperial College London (England) used Fourier transform infrared (FTIR) spectroscopic imaging to gather information about living cells by using low energy waves of light in the range of 4000–400 cm-1. What's important about the imaging method is that it does not harm the living cells through ionization or bleaching. The absorption patterns--or spectra--obtained from this method are highly characteristic of particular molecular vibrations, thus revealing a wealth of spatially resolved chemical information from the images.

The research group, led by Prof. Sergei Kazarian from the Department of Chemical Engineering at Imperial College London, has been working on these methods of spectroscopy with a focus on FTIR spectroscopic imaging in attenuated total reflection (ATR) mode, which allows for a greater resolution and sharper spatial control.

Kazarian, along with Dr. Andrew Chan, a former member of Kazarian's vibrational spectroscopy and chemical imaging group who is now based at the Institute of Pharmaceutical Science at King's College London, highlight the possibilities of non-destructive spectroscopic methods to analyze chemical processes including cell division, subcellular reactions, and cell differentiation, as well as medical applications such as the diffusion of drugs into tissues and live cells. The ultimate goal of such technologies would be to track the path of molecules within living cells without damaging the cell itself.

Full details of the work appear in the journal Chemical Society Reviews; for more information, please visit http://dx.doi.org/10.1039/C5CS00515A.

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!