Noninvasive Raman microspectroscopy technique boosts stem cell therapy

Oct. 20, 2011
Researchers at Nottingham University have developed a noninvasive Raman microspectroscopy (RMS) technique that phenotypically identifies live cardiomyocyte cells within highly heterogeneous cell populations with greater than 96% sensitivity and specificity.

In stem cell therapy, a problem that exists is controlling the excessive proliferation of cells with unwanted phenotypes after transplantation to prevent tissue overgrowth and tumor formation. And most techniques currently available for characterizing cells are invasive, therefore rendering the cells unusable. Recognizing this, researchers at Nottingham University (Nottingham, England) have developed a noninvasive Raman microspectroscopy (RMS) technique that phenotypically identifies live cardiomyocyte cells within highly heterogeneous cell populations with greater than 96% sensitivity and specificity.

Led by Dr. Ioan Notingher, the team used a back-illuminated CCD camera (from Andor Technology) attached to a purpose-built Raman microspectrometer to record spectra from individual cells derived from micrometric regions of human embryonic stem cells (hESCs). By comparing with matching immunofluorescence images from the same cells, they showed that the Raman spectra correspond to the spatial distribution of biomolecules such as nucleic acids, proteins, lipids and carbohydrates, and that this can be used to discriminate between different cell types.

To yield the shortest possible acquisition times for the Raman spectra, the team's CCD camera enabled measurements of Raman spectra from selected positions in the cells in only 0.5 sec, says Notingher. The camera's detectors work in the 800-900 nm spectral range, thereby avoiding photodamage to the cells. And since RMS has only a minimal background signal from water, it allows repeated observations of viable cells maintained under physiological conditions, he adds.

-----

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it's free!

Sponsored Recommendations

Brain Computer Interface (BCI) electrode manufacturing

Jan. 31, 2025
Learn how an industry-leading Brain Computer Interface Electrode (BCI) manufacturer used precision laser micromachining to produce high-density neural microelectrode arrays.

Electro-Optic Sensor and System Performance Verification with Motion Systems

Jan. 31, 2025
To learn how to use motion control equipment for electro-optic sensor testing, click here to read our whitepaper!

How nanopositioning helped achieve fusion ignition

Jan. 31, 2025
In December 2022, the Lawrence Livermore National Laboratory's National Ignition Facility (NIF) achieved fusion ignition. Learn how Aerotech nanopositioning contributed to this...

Nanometer Scale Industrial Automation for Optical Device Manufacturing

Jan. 31, 2025
In optical device manufacturing, choosing automation technologies at the R&D level that are also suitable for production environments is critical to bringing new devices to market...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!