NIR spectroscopy, MRI pair for challenging breast imaging

Feb. 20, 2014
A team of Dartmouth College engineers and radiologists is developing a new approach that combines magnetic resonance imaging (MRI) with near-infrared (NIR) spectroscopy, which could benefit women whose mammogram showed an abnormality and requires further testing to rule out cancer.

A team of Dartmouth College (Lebanon, NH) engineers and radiologists is developing a new approach that combines magnetic resonance imaging (MRI) with near-infrared (NIR) spectroscopy, which could benefit women whose mammogram showed an abnormality and requires further testing to rule out cancer.

Related: Technology advances breast cancer imaging

Related: Photoacoustic mammoscopy aims for safer, earlier breast cancer screening

The test would be conducted before an invasive biopsy to look for tumors. For the new method to work in routine patient care, MRI/NIR spectroscopy must adapt to an individual's body size as well as accommodate a range of cup sizes. The equipment must also mobilize and maintain contact with the breast.

An overview of the MRI/NIR spectroscopy system. The NIR spectroscopy system is housed in the MRI control room (a) and light is piped into the MRI suite for patient imaging using fiber-optic cables (b). A combined MRI/NIR spectroscopy breast coil (c) makes simultaneous MRI and NIR spectroscopy imaging possible. (Image courtesy of the Thayer School of Engineering/Dartmouth College)

The combo approach may offer specific advantages to women with dense breasts, who are more likely to develop and die from breast cancer. A dense breast is harder for a radiologist to "see through" when using traditional imaging equipment, which lacks the sensitivity to penetrate the dense tissue. Standard breast screening is effective 77–97 percent of the time in a normal breast, but when a breast is dense precision falls to 63–89 percent.

Prior approaches for MRI/NIR spectroscopy used parallel plates and relied on custom breast molds for each patient. Biomedical engineers from the Thayer School of Engineering at Dartmouth developed a new, more flexible, convenient, and comfortable approach. They designed a set of eight light-transmitting cables that can be adjusted to surround the breast with light tension. A woman lies on her stomach and the breast hangs pendant through the holes of the MRI/NIRS breast coil. The procedure is nearly identical to clinical MRI.

Eight women participated in a trial of the new design. "We found that the new interface allowed us to target lesions more effectively than ever before," says Michael Mastanduno, corresponding author of the study. "Setup time was faster and images were of higher quality."

The approach also offers increased coverage of the chest, giving providers improved visibility for "hard to see" areas, such as the outside area of the breast near the armpit.

"This work is a huge improvement on previous designs of MRI/NIRS systems. All breast sizes and lesion locations can now be effectively imaged. Though there is more work to be done, this technology is promising for improving MRI's ability to distinguish cancer from benign abnormalities," says Mastanduno.

As a next step, the researchers will test MRI/NIR spectroscopy in women with suspicious lesions.

Full details of the work appear in the journal Academic Radiology; for more information, please visit http://www.academicradiology.org/article/S1076-6332%2813%2900496-0.

-----

Follow us on Twitter, 'like' us on Facebook, and join our group on LinkedIn

Subscribe now to BioOptics World magazine; it's free!

Sponsored Recommendations

How to Tune Servo Systems: Force Control

Oct. 23, 2024
Tuning the servo system to meet or exceed the performance specification can be a troubling task, join our webinar to learn to optimize performance.

Laser Machining: Dynamic Error Reduction via Galvo Compensation

Oct. 23, 2024
A common misconception is that high throughput implies higher speeds, but the real factor that impacts throughput is higher accelerations. Read more here!

Boost Productivity and Process Quality in High-Performance Laser Processing

Oct. 23, 2024
Read a discussion about developments in high-dynamic laser processing that improve process throughput and part quality.

Precision Automation Technologies that Minimize Laser Cut Hypotube Manufacturing Risk

Oct. 23, 2024
In this webinar, you will discover the precision automation technologies essential for manufacturing high-quality laser-cut hypotubes. Learn key processes, techniques, and best...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!