Near-infrared spectroscopy improves osteoarthritis evaluation

Oct. 23, 2018
Near-infrared spectroscopy enables enhanced detection of cartilage injuries due to osteoarthritis.

A researcher at the University of Eastern Finland (Joensuu, Kuopio, Finland) has developed an arthroscopic near-infrared spectroscopy (NIRS) probe for evaluating articular cartilage and subchondral bone structure and composition. The probe enables enhanced detection of cartilage injuries due to osteoarthritis, as well as evaluation of the integrity of the surrounding tissue. The availability of comprehensive information on the health of joint tissues could substantially enhance the treatment outcome of arthroscopic intervention.

Clinical application of NIRS is now possible, thanks to better availability of computational power along with state-of-the-art mathematical modeling methods such as neural networks. With these methods, the relationship between the absorption of NIR light and tissue properties can be determined. This enables reliable determination of articular cartilage stiffness and subchondral bone mineral density—changes in these tissue properties are prognostic indicators of osteoarthritis.

The novel arthroscopic probe in an equine knee joint in vivo with the probe tip in contact with cartilage surface (inset). (Photo credit: Jaakko Sarin)

Since NIRS is not optimal for imaging of tissues, arthroscopically applicable imaging techniques such as optical coherence tomography (OCT) and ultrasound imaging were also used in the study. These techniques have been previously applied in intravascular imaging via specialized 1-mm-diameter catheters, which are therefore well suited for imaging narrow joint cavities. The study compared the reliability of these techniques for evaluation of chondral injuries with that of conventional arthroscopic evaluation.

"Optical coherence tomography was superior to conventional arthroscopy and ultrasound imaging. In contrast to conventional arthroscopic evaluation, optical coherence tomography and ultrasound imaging provide information on inner structures of cartilage and enable, for example, detection of cartilage detachment from subchondral bone," explains Jaakko Sarin, the researcher from the University of Eastern Finland who led the development.

Full details of the work appear in the journal Scientific Reports.

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!