PHOTOACOUSTICS/BREAST CANCER: Photoacoustic mammoscopy aims for safer, earlier breast cancer screening

Nov. 18, 2013
The photoacoustic mammoscope represents an entirely new way of imaging the breast, and hopes to detect cancer earlier than current methods.

The photoacoustic mammoscope represents an entirely new way of imaging the breast, and hopes to detect cancer earlier than current methods. Instead of potentially hazardous x-rays, which are used in traditional mammography, the photoacoustic mammoscope, designed by researchers in the University of Twente (The Netherlands) Biomedical Photonic Imaging group, uses a combination of benign infrared (IR) light and ultrasound to create a 3D map.

The technique delivers to tissue IR light in billionth-of-a-second pulses. Relatively high absorption by blood increases the temperature of blood vessels, which expand slightly but quickly. While imperceptible to the patient, this expansion generates detectable ultrasound waves that enable formation of a 3D map of breast vasculature. Since cancer tumors have more blood vessels than the surrounding tissue, they are distinguishable in this image.

A small clinical trial showed in 2012 that an earlier version of the technology could successfully image breast cancer in women. In future versions, the researchers expect to improve resolution and add the capability to image using several different wavelengths simultaneously, which promises to improve its ability to detect cancer.

Top (a) and side (b) views show a 3D-reconstructed tissue phantom, the background of which mimics normal breast tissue, while several embedded objects mimic blood vessels and tumors. In two image slices (c and d) taken with the new device, locations of five objects are indicated with arrows: objects 1 and 2 are blood vessel mimics, while objects 3, 4, and 5 are phantom tumors. (Image courtesy of Wenfeng Xia, Biomedical Photonic Imaging group, University of Twente)

A commercial instrument using this technology would likely cost much less than MRI and x-ray instruments, and would be more in line with ultrasound systems, said Wenfeng Xia, first author on a paper describing the system.1 The next step is to prepare for larger clinical trials; the final prototype will be ready for testing in 2014.

1. W. Xia et al., Biomed. Opt. Exp., 4, 11, 2555–2569 (2013).

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!