NANOTECHNOLOGY/DRUG DELIVERY: Light-based approach creates nanostructures with drug-delivery potential

July 17, 2013
By shining light of various colors through a nanoscale synthetic-polymer sphere, researchers have fashioned volcano-shaped nanostructures able to store precise amounts of other materials. Thus, the structures hold promise for drug delivery.

By shining light of various colors through a nanoscale synthetic-polymer sphere, researchers have fashioned volcano-shaped nanostructures able to store precise amounts of other materials. Thus, the structures hold promise for drug delivery.

To create the volcano-shaped nanostructures, North Carolina State University (Raleigh, NC) researchers first placed the transparent polymer balls onto a flat thin film and then shined ultraviolet light through the spheres to create a pattern on the film. Because the film is made of a photoreactive material, it was chemically changed wherever the light hit it. The researchers then submerged the thin film in a liquid solution that washed away the light-exposed sections—revealing nanoscale hollow mounds in the material that remained.

Cross-section of a "nano-volcano" created using light. (Image courtesy of Chih-Hao Chang)

The researchers have discovered that they can control the size of the volcanoes' cavities by changing the diameter of the nanoparticle spheres, or by changing the wavelength—or color—of light used, according to doctoral student Xu Zhang, lead author of a paper describing the work.1 Adjusting the core size would allow control over how much of a drug could be stored, while controlling the opening at the top could enable regulation of the drug's release. The team is now working to understand how such adjustments could be functionalized for drug delivery.

"It's exciting to take our understanding of how light scatters by particles and apply it to nanolithography in order to come up with something that could actually help people," says assistant professor Chih-Hao Chang, a co-author of the paper.

1. X. Zhang, J. Elek, and C.H. Chyang, ACS Nano, doi:10.1021/nn402637a (2013).

Sponsored Recommendations

Advancing Neuroscience Using High-Precision 3D Printing

March 7, 2025
Learn how Cold Spring Harbor Laboratory Used High-Precision 3D Printing to Advance Neuroscience Research using 3D Printed Optical Drives.

From Prototyping to Production: How High-Precision 3D Printing is Reinventing Electronics Manufacturing

March 7, 2025
Learn how micro 3D printing is enabling miniaturization. As products get smaller the challenge to manufacture small parts increases.

Sputtered Thin-film Coatings

Feb. 27, 2025
Optical thin-film coatings can be deposited by a variety of methods. Learn about 2 traditional methods and a deposition process called sputtering.

What are Notch Filters?

Feb. 27, 2025
Notch filters are ideal for applications that require nearly complete rejection of a laser line while passing as much non-laser light as possible.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!