Full-body scanner could ease early detection of skin cancer

March 26, 2015
A team of researchers has developed a full-body scanner device that could bring early detection of skin cancer a major step forward.

Researchers at the Magdeburg University Clinic for Dermatology and Venereology in Germany and colleagues have developed a full-body scanner device that could bring early detection of skin cancer a major step forward, as it could simplify the work of dermatologists and provide a more reliable form of skin screening.

Related: Gigapixel camera can screen for skin cancer at high resolution

Fifteen years ago, Professor Dr. Harald Gollnick, director of the Magdeburg University Clinic for Dermatology and Venereology, had the idea of developing a skin scanner. He knew from practical experience that the previous straightforward clinical examinations with a well-versed eye and a dermatoscope are very time-consuming, but that large numbers of moles are also laborious to document and their long-term monitoring is not especially reliable.

"If a patient has more than a hundred moles, then on the one hand it is difficult to make sure that you don't miss anything," explains senior physician Dr. Daniela Göppner. "On the other hand, the next time the doctor sees the patient, it is also necessary to be able to ascertain which moles have changed in terms of their size, texture, or color. It is necessary to find exactly the same places and the same moles."

In 2001, Gollnick's research team, the Fraunhofer Institute for Factory Operation and Automation (IFF), and medical technology firms Hasomed and Dornheim Medical Images (all in Magdeburg) launched the DermaScan research project, the goal of which was to develop a hardware and software program that is able to ascertain dermatological changes quickly and reliably, as well as prepares the data so that they can be used for a subsequent comparison.

The result of the project is the dermatological full-body scanner prototype, which is now in use at the Magdeburg University Clinic for Dermatology and Venereology. The device is able to scan 90 percent of the surface of the patient's skin; it is only a patient's intimate areas, scalp, and the soles of their feet that need to be examined separately by a doctor. The scanner, which resembles a glass-enclosed shower, requires that the patient stand on a rotary table naked. Their skin is illuminated optimally so that every individual mole is clearly recognizable on the images. The rotary table begins to turn and several digital cameras photograph the patient's skin from different angles.

"We then create a true-to-scale image of the person's skin on the computer, which enables the doctor to find a specific mole one year later," explains Dr. Dirk Berndt, leader of the business field of Measurement and Testing Technology at Fraunhofer IFF. "The position of the cameras and ensuring a diffusion of light that approximates to daylight are important."

High-resolution image data then results on the basis of which the doctor is able to evaluate, assess, and compare the coloration, irregularities, and size of the moles against the previous data.

However, it is unlikely that every dermatologist will be able to make the full-body scanner available in their practice in the foreseeable future. "It is a sophisticated, expensive technology—it is possible to imagine it as being a computerized tomography for the skin," Göppner explains. "Realistically, once it has reached market maturity, we can expect the scanner to go into use in specialist practices and clinics."

The research team, which was recently awarded the Hugo Junkers Award for innovation by the federal state of Saxony-Anhalt, will present the device at the World Congress for Dermatology (April 16-18; Vienna, Austria).

-----

Follow us on Twitter, 'like' us on Facebook, connect with us on Google+, and join our group on LinkedIn

About the Author

BioOptics World Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editor’s Note: BioOptics World has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Precision Motion Control for Photonics: 5 Keys to Success

Aug. 30, 2024
Precision motion control is a key element in the development and production of silicon-photonic devices. Yet, when nanometers matter, it can be challenging to evaluate and implement...

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

Aug. 30, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Motion Control Technologies for Medical Device Joining Applications

Aug. 30, 2024
Automated laser welding is beneficial in medical device manufacturing due to its precision, cleanliness, and efficiency. When properly optimized, it allows OEMs to achieve extremely...

How to Maximize Machine Building Performance with High-Performance Laser Processing

Aug. 30, 2024
Learn how an automotive high-speed laser blanking machine manufacturer builds machines that maximize throughput for faster processing speeds and improved productivity.

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!