Nanoparticle tracking helps characterize 'nanoconstructs' for biomedical applications

April 19, 2012
Scientists at Duke University's Fitzpatrick Institute for Photonics, led by Professor Tuan Vo-Dinh, applied nanoparticle tracking analysis (NTA) to characterize metal nanoparticle construct materials for use in biosensing, imaging, and cancer therapy.

Scientists at Duke University (Durham, NC)'s Fitzpatrick Institute for Photonics, led by Professor Tuan Vo-Dinh, applied nanoparticle tracking analysis (NTA) to characterize metal nanoparticle construct materials for use in biosensing, imaging, and cancer therapy.

To accomplish this, Dr. Hsiangkuo Yuan and other members of Vo-Dinh's group first designed and fabricated metal nanoparticle constructs such as gold nanostar platforms, which were then characterized with UV-VIS, transmission electron microscopy (TEM), Raman microscopy, fluorometers, and other techniques. But to design nanoconstructs for in-vivo applications, the particle size needs to be in the 10-100 nm range for lower clearance from the kidney and reticuloendothelial system (RES). It is also important that the construct is physiologically stable (non-aggregated) for biomedical applications such as optical imaging or nanodrug delivery, where the nanoparticle dose administered must be determined. To compare plasmonic properties (the enhanced electromagnetic properties of nanoparticles), they need to determine the effect of different sizes and to understand in detail the profile of the particle size distribution of similar concentrations. Recognizing this, the team turned to NTA (using an NTA system from NanoSight [Salisbury, England]).

Prior to NTA, the group mostly used TEM to look at particle shape and measure particle size. The surface coating or the aggregation state cannot be easily investigated using just TEM; NTA paired with TEM provides hydrodynamic size distribution and zeta potential. It also allows them to normalize their comparison by individual particle counting.

The team has published its work in the journal Nanotechnology, with another paper currently in press for Nanomedicine. For more information, please visit http://iopscience.iop.org/0957-4484/23/7/075102.

-----

Follow us on Twitter

Subscribe now to Laser Focus World magazine; it's free!

About the Author

LFW Staff

Published since 1965, Laser Focus World—a brand and magazine for engineers, researchers, scientists, and technical professionals—provides comprehensive global coverage of optoelectronic technologies, applications, and markets. With 80,000+ qualified print subscribers in print and over a half-million annual visitors to our online content, we are the go-to source to access decision makers and stay in-the-know.

Sponsored Recommendations

Demonstrating Flexible, Powerful 5-axis Laser Micromachining

Sept. 18, 2024
Five-axis scan heads offer fast and flexible solutions for generating precise holes, contoured slots and other geometries with fully defined cross sections. With a suitable system...

Enhance Your Experiments with Chroma's Spectra Viewer

Sept. 5, 2024
Visualize and compare fluorescence spectra with our interactive Spectra Viewer tool. Easily compare and optimize filters and fluorochromes for your experiments with this intuitive...

Optical Filter Orientation Guide

Sept. 5, 2024
Ensure optimal performance of your optical filters with our Orientation Guide. Learn the correct placement and handling techniques to maximize light transmission and filter efficiency...

Ensure Optimal Performance with Shortpass Filters

Sept. 5, 2024
Achieve precise wavelength blocking with our Shortpass Filters. Ideal for applications requiring effective light transmission and cutoff, these filters ensure optimal performance...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!