Webcast Dec. 3 2013: A new terahertz-spectroscopy tool for future photonics and electronic materials

Nov. 26, 2013
Terahertz radiation is a noncontact, nondestructive way of determining detailed characteristics of materials for future photonics and electronics.
John Wallace 720 5d273beb3450b

Much is made of the development of novel forms of photonics, such as organic detectors, emitters, and photovoltaics, as well as novel electronics, including graphene electronics, spin-based computing, and others. These up-and-coming technologies are important for good reason; unless we plan to be happy forever with 2 to 4 GHz processor speeds, existing data-storage densities, and conventional photonics, such technologies are our way forward. These technologies, by the way, can be characterized in detail by another form of photonics -- terahertz spectroscopy.

Terahertz radiation is a noncontact, nondestructive way of determining detailed material characteristics such as carrier scattering time in semiconductors (important to high-speed electronics), vibrational resonances in molecular solids (organic electronics and photonics), and antiferromagnetic resonances (spin-based computing).

Lake Shore Cryotronics (Westerville, OH), an expert in this area, has developed a continuous-wave terahertz-spectroscopy system especially for the discovery and advancement of future technological materials; the system will be available in early 2014. The company is describing its system, as well as some new research findings, in a Laser Focus World webcast on December 3, 2013; please join us for this (free) webcast, which will be presented by David Daughton, applications scientist at Lake Shore Cryotronics.

To register, visit: http://www.laserfocusworld.com/webcasts/2013/12/emerging-tools-for-materials-research.html

About the Author

John Wallace | Senior Technical Editor (1998-2022)

John Wallace was with Laser Focus World for nearly 25 years, retiring in late June 2022. He obtained a bachelor's degree in mechanical engineering and physics at Rutgers University and a master's in optical engineering at the University of Rochester. Before becoming an editor, John worked as an engineer at RCA, Exxon, Eastman Kodak, and GCA Corporation.

Sponsored Recommendations

Hexapod 6-DOF Active Optical Alignment Micro-Robots - Enablers for Advanced Camera Manufacturing

Dec. 18, 2024
Optics and camera manufacturing benefits from the flexibility of 6-Axis hexapod active optical alignment robots and advanced motion control software

Laser Assisted Wafer Slicing with 3DOF Motion Stages

Dec. 18, 2024
Granite-based high-performance 3-DOF air bearing nanopositioning stages provide ultra-high accuracy and reliability in semiconductor & laser processing applications.

Steering Light: What is the Difference Between 2-Axis Galvo Scanners and Single Mirror 2-Axis Scanners

Dec. 18, 2024
Advantages and limitations of different 2-axis light steering methods: Piezo steering mirrors, voice-coil mirrors, galvos, gimbal mounts, and kinematic mounts.

Free Space Optical Communication

Dec. 18, 2024
Fast Steering Mirrors (FSM) provide fine steering precision to support the Future of Laser Based Communication with LEO Satellites

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!